Experimental investigation of CO2 foam flooding-enhanced oil recovery in fractured low-permeability reservoirs: Core-scale to pore-scale

被引:18
|
作者
Zhu, Di [1 ,2 ]
Li, Binfei [1 ,2 ]
Chen, Longkun [3 ]
Zhang, Chuanbao [4 ]
Zheng, Lei [5 ]
Chen, Weiqing [6 ]
Li, Zhaomin [1 ,2 ]
机构
[1] Univ Petr East China, Key Lab Unconvent Oil & Gas Dev China, Minist Educ, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Peoples R China
[3] CNOOC East China Mkt Co Ltd, Nanjing 210019, Peoples R China
[4] SINOPEC, Shengli Oilfield Co, Explorat & Dev Res Inst, Dongying 257015, Peoples R China
[5] SINOPEC, Southwest Oil & Gas Co, Chengdu 610041, Peoples R China
[6] King Fahd Univ Petr & Minerals, Coll Petr Engn & Geosci, Dhahran 31261, Saudi Arabia
关键词
Fractured low-permeability reservoirs; CO 2 foam flooding; Fracture complexity; Microscopic visualization experiments; EOR mechanism; MOBILITY CONTROL; IMBIBITION; TIGHT; STABILIZATION; NANOPARTICLES; PERFORMANCE; SURFACTANT; PRESSURE; STORAGE; SYSTEM;
D O I
10.1016/j.fuel.2023.130792
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Fractured low-permeability reservoirs are characterized by poor reservoir physical properties, strong interlayer heterogeneity and the existence of natural and artificial fractures, resulting in significant water or gas channeling during flooding development. CO2 foam can effectively control the mobility of CO2 and ensure a more stable flooding front. In this study, taking into account the imbibition effect of the flooding process, the flooding performance under different injection methods and the influencing factors of foam pre-injection volume, back pressure and fracture complexity on CO2 foam flooding were systematically analyzed using fractured lowpermeability core flooding experiments. In addition, the mechanism of CO2 foam flooding enhanced oil recovery (EOR) in low-permeability fractured reservoirs was obtained in combination with microscopic flooding experiments. The results show that the maximum recovery of 59.36 % can be obtained by soaking the core samples for 12 h with pre-injection of 0.4 PV CO2 foam followed by CO2 foam flooding, which adequately considers the imbibition effect during the flooding process. The pressure difference and oil recovery increases with increasing foam pre-injection amount, and the oil recovery with back pressure (2 MPa and 4 MPa) is significantly higher than that without back pressure; however, a further increase in back pressure has less impact on the recovery. The oil recovery rate of the fracture-free core is lower than that of the multiple fracture core during CO2 foam flooding but higher than that of the single fracture core, and the fracture complexity of the fractured cores has less impact on the final oil recovery. Microscopic experiments show that CO2 foam can effectively prevent channeling and improve the sweep efficiency. Soaking during the CO2 foam flooding process makes foam enter the matrix through the fracture, and CO2 dissolves after the foam breaks to increase the mobility of the crude oil, while the surfactant solution emulsifies the crude oil and changes the rock wettability. The unbroken foam can increase the sweep range, and the crude oil that flows into the fracture is carried by the subsequent injected foam to be recovered as foamy oil.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Experimental Investigation of CO2 Huff-and-Puff Enhanced Oil Recovery in Fractured Low-Permeability Reservoirs: Core-Scale to Pore-Scale
    Zhao, Fenglan
    Yang, Changhe
    Huang, Shijun
    Yang, Mingyang
    Sun, Haoyue
    Chen, Xinyang
    ENERGIES, 2024, 17 (23)
  • [2] Pore-Scale Mechanisms of Enhanced Oil Recovery by CO2 Injection in Low-Permeability Heterogeneous Reservoir
    Ji, Ze-min
    Li, Shi
    Chen, Xing-long
    CUTTING-EDGE TECHNOLOGY FOR CARBON CAPTURE, UTILIZATION, AND STORAGE, 2018, : 113 - 121
  • [3] Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale
    Hao, Yongmao
    Li, Zongfa
    Su, Yuliang
    Kong, Chuixian
    Chen, Hong
    Meng, Yang
    ENERGY, 2022, 254
  • [4] Post-Surfactant CO2 Foam/Polymer-Enhanced Foam Flooding for Heavy Oil Recovery: Pore-Scale Visualization in Fractured Micromodel
    Telmadarreie, Ali
    Trivedi, Japan J.
    TRANSPORT IN POROUS MEDIA, 2016, 113 (03) : 717 - 733
  • [5] Experimental study on CO2 flooding characteristics in low-permeability fractured reservoirs
    Zhang, Tong
    Zhou, Guoliang
    Tang, Ming
    Wu, Jun
    Yang, Xin
    Zhu, Ming
    Xie, Zhizheng
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11637 - 11649
  • [6] Effects and Mechanisms of Dilute-Foam Dispersion System on Enhanced Oil Recovery from Pore-Scale to Core-Scale
    Wang, Xiuyu
    Shen, Rui
    Gao, Yuanyuan
    Xiong, Shengchun
    Zhao, Chuanfeng
    ENERGIES, 2024, 17 (16)
  • [7] Investigation of Polymer-Assisted CO2 Flooding to Enhance Oil Recovery in Low-Permeability Reservoirs
    Chen, Xin
    Li, Yiqiang
    Sun, Xiaoguang
    Liu, Zheyu
    Liu, Jianbin
    Liu, Shun
    POLYMERS, 2023, 15 (19)
  • [8] Pore-Scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery
    Nguyen, Phong
    Fadaei, Hossein
    Sinton, David
    ENERGY & FUELS, 2014, 28 (10) : 6221 - 6227
  • [9] Immiscible CO2 Flooding Efficiency in Low-Permeability Reservoirs: An Experimental Investigation of Residual Oil Distribution
    Yang, Ying
    Zhou, Xiao-Feng
    Sun, Le-Yin
    Wang, An-Lun
    Wei, Jian-guang
    Li, Chen-Xi
    Ke, Xiang
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [10] Pore- and Core-Scale Recovery Performance of Consortium Bacteria from Low-Permeability Reservoir
    Bian, Ziwei
    Song, Zhiyong
    Zhi, Zena
    Zhang, Xiangchun
    Qu, Yiqian
    Chai, Ruiyang
    Wu, Hanning
    Wu, Yifei
    MICROORGANISMS, 2023, 11 (11)