A SIMPLE EQUILIBRATION PROCEDURE LEADING TO POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATORS FOR THE CURL-CURL PROBLEM

被引:2
|
作者
Chaumont-Frelet, T. [1 ,2 ]
机构
[1] Inria, 2004 Route Lucioles, F-06902 Valbonne, France
[2] Lab JA Dieudonne, Parc Valrose,28 Ave Valrose, F-06108 Nice, France
关键词
A posteriori error estimates; electromagnetics; finite element methods; high order methods;
D O I
10.1090/mcom/3817
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We introduce two a posteriori error estimators for Ne & PRIME;de & PRIME;lec finite element discretizations of the curl-curl problem. These estimators pertain to a new Prager-Synge identity and an associated equilibration procedure. They are reliable and efficient, and the error estimates are polynomial-degree-robust. In addition, when the domain is convex, the reliability constants are fully computable. The proposed error estimators are also cheap and easy to implement, as they are computed by solving divergence-constrained minimization problems over edge patches. Numerical examples highlight our key findings, and show that both estimators are suited to drive adaptive refinement algorithms. Besides, these examples seem to indicate that guaranteed upper bounds can be achieved even in non-convex domains.
引用
收藏
页码:2413 / 2437
页数:25
相关论文
共 10 条
  • [1] STABLE BROKEN H(curl) POLYNOMIAL EXTENSIONS AND p-ROBUST A POSTERIORI ERROR ESTIMATES BY BROKEN PATCHWISE EQUILIBRATION FOR THE CURL-CURL PROBLEM
    Chaumont-Frelet, T.
    Ern, A.
    Vohralik, M.
    MATHEMATICS OF COMPUTATION, 2022, 91 (333) : 37 - 74
  • [2] Polynomial-degree-robust H(curl)-stability of discrete minimization in a tetrahedron
    Chaumont-Frelet, Theophile
    Ern, Alexandre
    Vohralik, Martin
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (9-10) : 1101 - 1110
  • [3] p-ROBUST EQUILIBRATED FLUX RECONSTRUCTION IN H(curl) BASED ON LOCAL MINIMIZATIONS: APPLICATION TO A POSTERIORI ANALYSIS OF THE CURL-CURL PROBLEM
    Chaumont-frelet, Theophile
    Vohralik, Martin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (04) : 1783 - 1818
  • [4] A POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATOR FOR NEDELEC DISCRETIZATIONS OF MAGNETOSTATIC PROBLEMS
    Gedicke, Joscha
    Geevers, Sjoerd
    Perugia, Ilaria
    Schoeberl, Joachim
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 2237 - 2253
  • [5] Robust a posteriori error estimation for finite element approximation to H(curl) problem
    Cai, Zhiqiang
    Cao, Shuhao
    Falgout, Rob
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 309 : 182 - 201
  • [6] hp-ADAPTATION DRIVEN BY POLYNOMIAL-DEGREE-ROBUST A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC PROBLEMS
    Dolejsi, Vit
    Ern, Alexandre
    Vohralik, Martin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A3220 - A3246
  • [7] Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
    Martin Čermák
    Frédéric Hecht
    Zuqi Tang
    Martin Vohralík
    Numerische Mathematik, 2018, 138 : 1027 - 1065
  • [8] Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problem
    Cermak, Martin
    Hecht, Frederic
    Tang, Zuqi
    Vohralik, Martin
    NUMERISCHE MATHEMATIK, 2018, 138 (04) : 1027 - 1065
  • [9] POLYNOMIAL PRESERVING RECOVERY AND A POSTERIORI ERROR ESTIMATES FOR THE TWO-DIMENSIONAL QUAD-CURL PROBLEM
    Zhang, Baiju
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 1323 - 1341
  • [10] POLYNOMIAL PRESERVING RECOVERY AND A POSTERIORI ERROR ESTIMATES FOR THE TWO-DIMENSIONAL QUAD-CURL PROBLEM
    Zhang, Baiju
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022,