On squares of Fourier coefficients twist exponential functions with applications

被引:0
|
作者
Zhang, Wei [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
关键词
Exponential sums; Beatty sequence; automorphic forms; ARITHMETIC FUNCTIONS; SUMS; PRIMES;
D O I
10.1142/S1793042123500938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a Hecke-Maass cusp form of weight zero for SL2(Z) and lambda(f)(n) be the nth Fourier coefficient. For almost all v, we have [GRAPHICS] . which improves the result of Acharya [Exponential sums of squares of Fourier coefficients of cusp forms, Proc. Indian Acad. Sci. Math. Sci. 130 (2020) 24], who showed an upper bound larger than x(0.8297). For all alpha > 1 of type tau < infinity, we also show that [GRAPHICS] . where B alpha,ss := {[ alpha n+ ss]}(infinity) (n=1). This result relies heavily on a generalized double sum (see Theorem 1.3).
引用
收藏
页码:1953 / 1965
页数:13
相关论文
共 50 条