Modeling lens potentials with continuous neural fields in galaxy-scale strong lenses

被引:5
|
作者
Biggio, L. [1 ]
Vernardos, G. [2 ]
Galan, A. [2 ]
Peel, A. [2 ]
Courbin, F. [2 ]
机构
[1] ETHZ, Dept Comp Sci, Data Analyt Lab, Univ str 6, CH-8006 Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne EPFL, Inst Phys, Lab Astrophys, Observ Sauverny, CH-1290 Versoix, Switzerland
基金
欧洲研究理事会; 欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
gravitational lensing; strong; galaxies; structure; methods; data analysis; gravitation; dark matter; DARK-MATTER SUBSTRUCTURE; TOO BIG; INFERENCE; NETWORKS; IMAGES; FAIL;
D O I
10.1051/0004-6361/202245126
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Strong gravitational lensing is a unique observational tool for studying the dark and luminous mass distribution both within and between galaxies. Given the presence of substructures, current strong lensing observations demand more complex mass models than smooth analytical profiles, such as power-law ellipsoids. In this work, we introduce a continuous neural field to predict the lensing potential at any position throughout the image plane, allowing for a nearly model-independent description of the lensing mass. We applied our method to simulated Hubble Space Telescope imaging data containing different types of perturbations to a smooth mass distribution: a localized dark subhalo, a population of subhalos, and an external shear perturbation. Assuming knowledge of the source surface brightness, we used the continuous neural field to model either the perturbations alone or the full lensing potential. In both cases, the resulting model was able to fit the imaging data, and we were able to accurately recover the properties of both the smooth potential and the perturbations. Unlike many other deep-learning methods, ours explicitly retains lensing physics (i.e., the lens equation) and introduces high flexibility in the model only where required, namely, in the lens potential. Moreover, the neural network does not require pretraining on large sets of labeled data and predicts the potential from the single observed lensing image. Our model is implemented in the fully differentiable lens modeling code HERCULENS.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] On modeling galaxy-scale strong lens systems
    Keeton, Charles R.
    GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (09) : 2151 - 2176
  • [2] On modeling galaxy-scale strong lens systems
    Charles R. Keeton
    General Relativity and Gravitation, 2010, 42 : 2151 - 2176
  • [3] Extensive light profile fitting of galaxy-scale strong lenses Towards an automated lens detection method
    Brault, F.
    Gavazzi, R.
    ASTRONOMY & ASTROPHYSICS, 2015, 577
  • [4] Extensive light profile fitting of galaxy-scale strong lenses: Towards an automated lens detection method
    Brault, F.
    Gavazzi, R.
    Astronomy and Astrophysics, 2015, 577
  • [5] A PCA-based automated finder for galaxy-scale strong lenses
    Joseph, R.
    Courbin, F.
    Metcalf, R. B.
    Giocoli, C.
    Hartley, P.
    Jackson, N.
    Bellagamba, F.
    Kneib, J. -P.
    Koopmans, L.
    Lemson, G.
    Meneghetti, M.
    Meylan, G.
    Petkova, M.
    Pires, S.
    ASTRONOMY & ASTROPHYSICS, 2014, 566
  • [6] The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses
    Shu, Yiping
    Brownstein, Joel R.
    Bolton, Adam S.
    Koopmans, Leon V. E.
    Treu, Tommaso
    Montero-Dorta, Antonio D.
    Auger, Matthew W.
    Czoske, Oliver
    Gavazzi, Raphael
    Marshall, Philip J.
    Moustakas, Leonidas A.
    ASTROPHYSICAL JOURNAL, 2017, 851 (01):
  • [7] Using wavelets to capture deviations from smoothness in galaxy-scale strong lenses
    Galan, A.
    Vernardos, G.
    Peel, A.
    Courbin, F.
    Starck, J. -L.
    ASTRONOMY & ASTROPHYSICS, 2022, 668
  • [8] LinKS: discovering galaxy-scale strong lenses in the Kilo-Degree Survey using convolutional neural networks
    Petrillo, C. E.
    Tortora, C.
    Vernardos, G.
    Koopmans, L. V. E.
    Kleijn, G. Verdoes
    Bilicki, M.
    Napolitano, N. R.
    Chatterjee, S.
    Covone, G.
    Dvornik, A.
    Erben, T.
    Getman, F.
    Giblin, B.
    Heymans, C.
    de Jong, J. T. A.
    Kuijken, K.
    Schneider, P.
    Shan, H.
    Spiniello, C.
    Wright, A. H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (03) : 3879 - 3896
  • [9] Searching for strong galaxy-scale lenses in galaxy clusters with deep networks I. Methodology and network performance
    Angora, G.
    Rosati, P.
    Meneghetti, M.
    Brescia, M.
    Mercurio, A.
    Grillo, C.
    Bergamini, P.
    Acebron, A.
    Caminha, G.
    Nonino, M.
    Tortorelli, L.
    Bazzanini, L.
    Vanzella, E.
    ASTRONOMY & ASTROPHYSICS, 2023, 676
  • [10] HOLISMOKES: II. Identifying galaxy-scale strong gravitational lenses in Pan-STARRS using convolutional neural networks
    Canameras, R.
    Schuldt, S.
    Suyu, S. H.
    Taubenberger, S.
    Meinhardt, T.
    Leal-Taixe, L.
    Lemon, C.
    Rojas, K.
    Savary, E.
    ASTRONOMY & ASTROPHYSICS, 2020, 644