Spatio-temporal hierarchical MLP network for traffic forecasting

被引:23
|
作者
Qin, Yanjun [1 ]
Luo, Haiyong [2 ]
Zhao, Fang [3 ]
Fang, Yuchen [3 ]
Tao, Xiaoming [1 ]
Wang, Chenxing [3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Comp Sci, Natl Pilot Software Engn Sch, Beijing 100876, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Traffic forecasting; Spatial-temporal data; Multilayer perceptron; FLOW PREDICTION;
D O I
10.1016/j.ins.2023.03.063
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic forecasting is an indispensable part of intelligent transportation systems. However, existing methods suffer from limited capability in capturing hierarchical temporal characteristics of the traffic time series. To be specific, they neglect the property that the time series is composed of trend-cyclical and seasonal parts. On the other hand, prior methods ignore the natural hierarchical structure of traffic road networks and thus fail to capture the macro spatial dependence of region networks. To address these issues, we propose a novel spatio-temporal hierarchical MLP network (STHMLP) for traffic forecasting. By adopting a decomposition architecture in the STHMLP, trend-cyclical and seasonal features are gradually grasped from multi-scale local compositions of traffic time series. For each scale of traffic time series, we design a fine module and a coarse module to extract spatio-temporal information from roads and regions, respectively. Specifically, the fine module utilizes spatial filters on the frequency domain features of traffic time series to efficiently capture fine-grained spatial dependencies. The coarse module adaptively coarsens road networks to region networks and captures coarse-grained spatial dependencies from region networks. Experiments on four real-world traffic datasets demonstrate the STHMLP outperforms state-of-the-art baselines on traffic forecasting.
引用
收藏
页码:543 / 554
页数:12
相关论文
共 50 条
  • [1] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [2] Hierarchical spatio-temporal graph ODE networks for traffic forecasting
    Xu, Tao
    Deng, Jiaming
    Ma, Ruolin
    Zhang, Zixiang
    Zhao, Yingying
    Zhao, Zhilong
    Zhang, Juntao
    INFORMATION FUSION, 2025, 113
  • [3] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [4] Probabilistic spatio-temporal graph convolutional network for traffic forecasting
    Karim, Atkia Akila
    Nower, Naushin
    APPLIED INTELLIGENCE, 2024, : 7070 - 7085
  • [5] Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
    Ta, Xuxiang
    Liu, Zihan
    Hu, Xiao
    Yu, Le
    Sun, Leilei
    Du, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [6] Integrated Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Singh, Vandana
    Sahana, Sudip Kumar
    Bhattacharjee, Vandana
    APPLIED SCIENCES-BASEL, 2024, 14 (24):
  • [7] Spatio-Temporal Hypergraph Neural ODE Network for Traffic Forecasting
    Yao, Chengzhi
    Li, Zhi
    Wang, Jumbo
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1499 - 1504
  • [8] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238
  • [9] HiSTGNN: Hierarchical spatio-temporal graph neural network for weather forecasting
    Ma, Minbo
    Xie, Peng
    Teng, Fei
    Wang, Bin
    Ji, Shenggong
    Zhang, Junbo
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 648
  • [10] Forecasting of mobile network traffic and spatio-temporal analysis using modLSTM
    Aski, Vidyadhar J.
    Chavan, Rugved Sanjay
    Dhaka, Vijaypal Singh
    Rani, Geeta
    Zumpano, Ester
    Vocaturo, Eugenio
    MACHINE LEARNING, 2024, 113 (04) : 2277 - 2300