On the numerical approximation of Blaschke-Santaló diagrams using Centroidal Voronoi Tessellations

被引:1
|
作者
Bogosel, Beniamin [1 ]
Buttazzo, Giuseppe [2 ]
Oudet, Edouard [3 ]
机构
[1] Inst Polytech Paris, Ecole Polytech, Ctr Math Appl, CNRS, F-91120 Palaiseau, France
[2] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[3] Univ Joseph Fourier Tour IRMA, Lab Jean Kuntzmann LJK, BP 53,51 Rue Math, F-38041 Grenoble 9, France
关键词
Blaschke-Santalo diagrams; Voronoi tessellations; Monte Carlo methods; optimal transport; Lloyd's algorithm; GLOBAL CONVERGENCE;
D O I
10.1051/m2an/2023092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Blaschke-Santalo diagrams are images of maps defined on a set of parameters, taking values into an Euclidean space. Typically, the dimension of the source space is high, possibly infinite, while the target space is two or three dimensional. These diagrams help characterize geometrically various inequalities and are of particular interest in the field of shape optimization. We propose a numerical method, based on Centroidal Voronoi Tessellations, which produces sample points in the parameter space that have uniformly distributed images in the Blaschle-Santalo diagram, therefore providing an accurate description of the latter. Compared with the classical Monte Carlo methods, which simply use a large number of images corresponding to random parameters, the method proposed is computationally efficient and precise. Simulations for two and three dimensional diagrams are presented involving examples in algebra and shape optimization.
引用
收藏
页码:393 / 420
页数:28
相关论文
共 23 条
  • [1] Cooperative Phototaxis Using Networked Mobile Sensors and Centroidal Voronoi Tessellations
    Rounds, Shelley
    Chen, YangQuan
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 3274 - 3279
  • [2] Cooperative Sensing and Distributed Control of a Diffusion Process Using Centroidal Voronoi Tessellations
    Haiyang Chao~* and Yang-Quan Chen Center for Self Organizing and Intelligent Systems
    NumericalMathematics:Theory,MethodsandApplications, 2010, (02) : 162 - 177
  • [3] Cooperative Sensing and Distributed Control of a Diffusion Process Using Centroidal Voronoi Tessellations
    Chao, Haiyang
    Chen, Yang-Quan
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (02) : 162 - 177
  • [4] Consensus of information in distributed control of a diffusion process using centroidal Voronoi tessellations
    Chao, Haiyang
    Chen, YangQuan
    Ren, Wei
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 5638 - 5643
  • [5] DYNAMIC FORMATION CONTROL USING NETWORKED MOBILE SENSORS AND CENTROIDAL VORONOI TESSELLATIONS
    Rounds, Shelley
    Chen, YangQuan
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 3, 2010, : 109 - 118
  • [6] Numerical studies of MacQueen's k-means algorithm for computing the centroidal Voronoi tessellations
    Du, Q
    Wong, TW
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) : 511 - 523
  • [7] Spurious dianeutral mixing in a global ocean model using spherical centroidal voronoi tessellations
    Shimei Zhao
    Yudi Liu
    Journal of Ocean University of China, 2016, 15 : 923 - 935
  • [8] Image Segmentation Using Local Variation and Edge-Weighted Centroidal Voronoi Tessellations
    Wang, Jie
    Ju, Lili
    Wang, Xiaoqiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (11) : 3242 - 3256
  • [9] Spurious Dianeutral Mixing in a Global Ocean Model Using Spherical Centroidal Voronoi Tessellations
    ZHAO Shimei
    LIU Yudi
    JournalofOceanUniversityofChina, 2016, 15 (06) : 923 - 935
  • [10] Using Centroidal Voronoi Tessellations to Scale Up the Multidimensional Archive of Phenotypic Elites Algorithm
    Vassiliades, Vassilis
    Chatzilygeroudis, Konstantinos
    Mouret, Jean-Baptiste
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (04) : 623 - 630