Magnetic MXene: A Machine-Learning Model With Small Data

被引:2
|
作者
Khatri, Yogesh [1 ]
Atpadkar, Vaidehi [1 ]
Agarwal, Aashi [1 ]
Kashyap, Arti [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Phys Sci, Kamand 175005, Himachal Prades, India
关键词
Magnetic moments; Machine learning; Databases; Predictive models; Support vector machines; Metals; Magnetic properties; Dimensionality reduction; machine learning (ML); magnetic moment prediction; MXenes; FERROMAGNETISM; ROBUST;
D O I
10.1109/TMAG.2023.3287988
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
MXenes, comprising atomically thin layers of transition metal nitrides, carbides, and carbonitrides, exhibit properties that are not found in their corresponding bulk materials. Interestingly, because of the presence of transition metal, MXenes may also provide the candidate materials for observing low-dimensional magnetism. This can be of interest to various applications such as data storage, electromagnetic interference shielding, and spintronic devices. Here, we focus on the magnetic MXenes, which are only a few in number out of known MXenes. We propose machine-learning models to predict the magnetic moments of the MXenes and to classify the MXenes based on their chemical stability. Using these models, we propose four new chemically stable MXene materials having a potentially high magnetic moment.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Performance analysis for machine-learning experiments using small data sets
    Pietersma, D
    Lacroix, R
    Lefebvre, D
    Wade, KM
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2003, 38 (01) : 1 - 17
  • [2] Developing machine-learning regression model with Logical Analysis of Data (LAD)
    Khalifa, Ramy M.
    Yacout, Soumaya
    Bassetto, Samuel
    COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 151
  • [3] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    MATHEMATICS, 2023, 11 (01)
  • [4] Machine-learning classifiers for imbalanced tornado data
    Trafalis T.B.
    Adrianto I.
    Richman M.B.
    Lakshmivarahan S.
    Computational Management Science, 2014, 11 (4) : 403 - 418
  • [5] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [6] Machine-Learning Metacomputing for Materials Science Data
    Steuben, J. C.
    Geltmacher, A. B.
    Rodriguez, S. N.
    Birnbaum, A. J.
    Graber, B. D.
    Rawlings, A. K.
    Iliopoulos, A. P.
    Michopoulos, J. G.
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (11)
  • [7] Machine-learning techniques for macromolecular crystallization data
    Gopalakrishnan, V
    Livingston, G
    Hennessy, D
    Buchanan, B
    Rosenberg, JM
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 1705 - 1716
  • [8] An efficient machine-learning model based on data augmentation for pain intensity recognition
    Al-Qerem, Ahmad
    EGYPTIAN INFORMATICS JOURNAL, 2020, 21 (04) : 241 - 257
  • [9] A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis
    Jeon, Minseok
    Jeong, Sehun
    Cha, Sungdeok
    Oh, Hakjoo
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2019, 41 (02):
  • [10] Nuisance small molecules under a machine-learning lens
    Rodrigues, Tiago
    DIGITAL DISCOVERY, 2022, 1 (03): : 209 - 215