Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds

被引:12
|
作者
Yang, Jin
Li, Zhihui
Li, Shikai
Zhang, Qianqian
Zhou, Xiaojun
He, Chuanglong [1 ]
机构
[1] Donghua Univ, Shanghai Engn Res Ctr Nanobiomat & Regenerat Med, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
HYDROGEL;
D O I
10.1039/d2bm01978g
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Three-dimensional (3D) bioprinting is a powerful technique for the production of tissue-like structures to study cell behavior and tissue properties. A major challenge in 3D extrusion bioprinting is the limited diversity of bioinks, which fulfills the requirements of shear-thinning and strain recovery behaviors and can be solidified by a crosslinking process to retain their shape after printing. Herein, we aimed to develop a natural biopolymer-based formula with dual crosslinking performance to formulate a cell-laden bioink. In this study, methacrylate gelatin (GelMA) and methacrylated silk fibroin (SFMA) with different degrees of methacrylation were fabricated into hybrid bioinks. The GelMA/SFMA bioink of an optimal degree provides excellent rheological properties for extrusion bioprinting, and its hydrogel precursor polymer can form a polymer network at a low temperature and the high shape fidelity of the printed construct through photocrosslinking. Moreover, the hydrogel bioink can encapsulate different types of cells together to create 3D printed constructs that mimic the cellular microenvironment at a microscale level. Human umbilical vein endothelial cells (HUVECs) and rat pheochromocytoma (PC12) cells encapsulated in the 3D printed constructs can maintain high viability and proliferation ability for a long time. Furthermore, the GelMA/SFMA hydrogels were implanted in the subcutaneous tissue of SD rats for the evaluation of biocompatibility and degradability in vivo. Thus, the proposed GelMA/SFMA bioink expands the palette of available bioinks and offers opportunities for biomedical applications such as tissue engineering and soft robotics in clinical applications.
引用
收藏
页码:1895 / 1909
页数:15
相关论文
共 50 条
  • [1] Silk fibroin-based scaffolds for tissue engineering
    Ma, Li
    Dong, Wenyuan
    Lai, Enping
    Wang, Jiamian
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2024, 12
  • [2] Silk fibroin-based scaffolds for tissue engineering
    Zi-Heng Li
    Shi-Chen Ji
    Ya-Zhen Wang
    Xing-Can Shen
    Hong Liang
    Frontiers of Materials Science, 2013, 7 : 237 - 247
  • [3] Silk fibroin-based scaffolds for tissue engineering
    Li, Zi-Heng
    Ji, Shi-Chen
    Wang, Ya-Zhen
    Shen, Xing-Can
    Liang, Hong
    FRONTIERS OF MATERIALS SCIENCE, 2013, 7 (03) : 237 - 247
  • [4] COMPARISON OF TWO SILK FIBROIN-BASED BIOINKS FOR MENISCUS BIOPRINTING
    Fritz, Jennifer
    Moser, Anna-Christina
    Otahal, Alexander
    De Luna, Andrea
    Schneider, Karl H.
    Teuschl-Woller, Andreas
    Nehrer, Stefan
    OSTEOARTHRITIS AND CARTILAGE, 2024, 32 : S401 - S402
  • [5] Nanocomposite Methacrylated Silk Fibroin-Based Scaffolds for Bone Tissue Engineering
    Spessot, Eugenia
    Passuello, Serena
    Shah, Lekha Vinod
    Maniglio, Devid
    Motta, Antonella
    BIOMIMETICS, 2024, 9 (04)
  • [6] DEVELOPMENT OF THAI SILK FIBROIN-BASED HYDROGEL BIOINKS FOR 3D BIOPRINTING APPLICATIONS
    Ratanavaraporn, Juthamas
    Pudkon, Watcharapong
    Laomeephol, Chavee
    Damrongsakkul, Siriporn
    TISSUE ENGINEERING PART A, 2022, 28 : S107 - S108
  • [7] Silk fibroin-based 3-D porous scaffolds for cartilage tissue engineering
    Motta, A.
    Wang, Y.
    Bella, E.
    Lee, C. S. D.
    Migliaresi, C.
    Schwartz, Z.
    Boyan, B. D.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 776 - 776
  • [8] Silk Fibroin-Based Scaffold for Bone Tissue Engineering
    Choi, Joo Hee
    Kim, Do Kyung
    Song, Jeong Eun
    Oliveira, Joaquim Miguel
    Reis, Rui Luis
    Khang, Gilson
    NOVEL BIOMATERIALS FOR REGENERATIVE MEDICINE, 2018, 1077 : 371 - 387
  • [9] Functionalization of silk fibroin-based biomaterials for tissue engineering
    Kambe, Yusuke
    POLYMER JOURNAL, 2021, 53 (12) : 1345 - 1351
  • [10] Silk Fibroin-Based Biomaterials for Tissue Engineering Applications
    Li, Guangfei
    Sun, Shan
    MOLECULES, 2022, 27 (09):