Structure and dynamics of Fe90Si3O7 liquids close to Earth's liquid core conditions

被引:2
|
作者
Tang, Ling [1 ]
Zhang, Chao [2 ]
Sun, Yang [3 ,4 ,5 ]
Ho, Kai-Ming [4 ]
Wentzcovitch, Renata M. [5 ,6 ,7 ]
Wang, Cai-Zhuang [4 ,8 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Phys, Coll Sci, Hangzhou 310023, Peoples R China
[2] Yantai Univ, Dept Phys, Yantai 264005, Peoples R China
[3] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[4] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[5] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[6] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA
[7] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[8] Iowa State Univ, Ames Lab USDOE, Ames, IA 50011 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevB.108.064104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using an artificial neural-network machine learning interatomic potential, we have performed molecular dynamics simulations to study the structure and dynamics of Fe90Si3O7 liquid close to the Earth's liquid core conditions. The simulation results reveal that the short-range structural order (SRO) in the Fe90Si3O7 liquid is very strong. About 80% of the atoms are arranged in crystallinelike SRO motifs. In particular, similar to 70% of Fe-centered clusters can be classified as either hexagonal-close-packed-like or icosahedrallike SRO motifs. The SRO clusters centered on Fe, Si, or O atoms are strongly intermixed and homogenously distributed throughout the liquid. The atomic structure of the liquid and the fractions of dominant SRO clusters are not sensitive to pressure/temperature used in the simulations except that the SRO of the O-centered clusters is enhanced close to inner core pressures. The O-diffusion coefficient is about two to three times larger than the Fe and Si ions and increases more rapidly in the deeper core regions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Structure and dynamics of liquid iron under Earth's core conditions
    Alfè, D
    Kresse, G
    Gillan, MJ
    PHYSICAL REVIEW B, 2000, 61 (01) : 132 - 142
  • [2] Ab Initio Molecular Dynamics Investigation of Molten Fe-Si-O in Earth's Core
    Huang, Dongyang
    Badro, James
    Brodholt, John
    Li, Yunguo
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (12) : 6397 - 6405
  • [3] The structure of Fe-Si alloy in Earth's inner core
    Tateno, Shigehiko
    Kuwayama, Yasuhiro
    Hirose, Kei
    Ohishi, Yasuo
    EARTH AND PLANETARY SCIENCE LETTERS, 2015, 418 : 11 - 19
  • [4] Electronic structure of Fe-Ni compounds at the Earth's core conditions
    Krasovskii, AE
    EUROPEAN MAGNETIC MATERIALS AND APPLICATIONS, 2001, 373-3 : 677 - 680
  • [5] Free Energies of Fe-O-Si Ternary Liquids at High Temperatures and Pressures: Implications for the Evolution of the Earth's Core Composition
    Zhang, Zhigang
    Csanyi, Gabor
    Alfe, Dario
    Zhang, Yigang
    Li, Juan
    Liu, Jin
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (04)
  • [6] The axial ratio of hcp Fe and Fe-Ni-Si alloys to the conditions of Earth's inner core
    Fischer, Rebecca A.
    Campbell, Andrew J.
    AMERICAN MINERALOGIST, 2015, 100 (11-12) : 2718 - 2724
  • [7] Synthesis and compression study of orthorhombic Fe7(C, Si)3: a possible constituent of the Earth's core
    Saha, Pinku
    Glazyrin, Konstantin
    Mukherjee, Goutam Dev
    HIGH PRESSURE RESEARCH, 2021, 41 (03) : 290 - 305
  • [8] First-principles simulations of liquid Fe-S under Earth's core conditions
    Alfe, D
    Gillan, MJ
    PHYSICAL REVIEW B, 1998, 58 (13): : 8248 - 8256
  • [9] Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
    Wicks, June K.
    Smith, Raymond F.
    Fratanduono, Dayne E.
    Coppari, Federica
    Kraus, Richard G.
    Newman, Matthew G.
    Rygg, J. Ryan
    Eggert, Jon H.
    Duffy, Thomas S.
    SCIENCE ADVANCES, 2018, 4 (04):
  • [10] Deep machine learning potential for atomistic simulation of Fe-Si-O systems under Earth's outer core conditions
    Zhang, Chao
    Tang, Ling
    Sun, Yang
    Ho, Kai-Ming
    Wentzcovitch, Renata M.
    Wang, Cai-Zhuang
    PHYSICAL REVIEW MATERIALS, 2022, 6 (06)