Impact response of a sandwich with a foam aluminum core enhanced by a ceramic tile: An experimental study

被引:1
|
作者
Ren, Jianwei [1 ,2 ]
Sun, Minqian [3 ]
Zhou, Yilai [1 ,2 ]
Wang, Tao [4 ]
Zhao, Zhenyu [1 ,2 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, MIIT Key Lab Multifunct Lightweight Mat & Struct, Nanjing, Peoples R China
[3] Army Engn Univ PLA, State Key Lab Disaster Prevent & Mitigat Explos &, Nanjing, Peoples R China
[4] Troops Chinese PLA, Beijing, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, 26 Yudao St, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Enhanced sandwich; ceramic tile; hybrid core; drop-hammer test; impact resistance; HONEYCOMB SANDWICH; ENERGY-ABSORPTION; BALLISTIC IMPACT; BENDING BEHAVIOR; PANELS; PERFORATION; TOPOLOGY;
D O I
10.1177/10996362221130967
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This research proposes using a hybrid core consisting of foam metal and a ceramic tile to enhance the impact resistance of the sandwich construction. We assess the impact response of such an enhanced sandwich under a low-velocity drop-hammer load. Two thicknesses and three positions of the ceramic tile were considered. The low-velocity impact experiment was performed with a 16 mm hemispherical hammerhead and an impact energy range of 30-70 J. The results indicate that the ceramic tile significantly increases the impact resistance of the sandwich. A sandwich with a ceramic tile in the middle of the aluminum foam core had the highest peak force, perforation resistance, and energy absorption. Moreover, the performance was better for the thicker ceramic tiles, and the different damage patterns of the post-mortem sandwiches were analyzed. The underlying mechanisms of enhanced performance are discussed schematically in detail for the sandwiches. These results indeed showed that this proposed sandwich construction could be considered as a potential candidate in high-performance protective component.
引用
收藏
页码:625 / 644
页数:20
相关论文
共 50 条
  • [1] EXPERIMENTAL STUDY ON THE IMPACT CHARACTERISTICS OF A SANDWICH COMPOSITE WITH AN ALUMINUM FOAM CORE
    Han, M. S.
    Bang, S. O.
    Cho, J. U.
    Lee, S.
    Cho, C.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2013, 14 (01) : 61 - 66
  • [2] Experimental study on the impact characteristics of a sandwich composite with an aluminum foam core
    M. S. Han
    S. O. Bang
    J. U. Cho
    S. Lee
    C. Cho
    International Journal of Automotive Technology, 2013, 14 : 61 - 66
  • [3] Impact response of aluminum foam core sandwich structures
    Mohan, Kapil
    Yip, Tick Hon
    Idapalapati, Sridhar
    Chen, Zhong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 : 94 - 101
  • [4] Experimental study on stress attenuation in aluminum foam core sandwich panels in high-velocity impact
    Liang, Xiaolong
    Luo, Hongjie
    Mu, Yongliang
    Wu, Linli
    Lin, Hao
    MATERIALS LETTERS, 2017, 203 : 100 - 102
  • [5] Indentation of composite sandwich panels with aluminum foam core: An experimental parametric study
    Li, Zhibin
    Zheng, Zhijun
    Yu, Jilin
    Yang, Jie
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2014, 33 (18) : 1671 - 1681
  • [6] Impact perforation of sandwich panels with aluminum foam core: A numerical and analytical study
    Elnasri, I.
    Zhao, H.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2016, 96 : 50 - 60
  • [7] Impact damage behavior of sandwich composite with aluminum foam core
    Han, Moon Sik
    Cho, Jae Ung
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 : S42 - S46
  • [8] Blast impact response of aluminum foam sandwich composites
    Rajan Sriram
    Uday K. Vaidya
    Jong-Eun Kim
    Journal of Materials Science, 2006, 41
  • [9] Blast impact response of aluminum foam sandwich composites
    Sriram, Rajan
    Vaidya, Uday K.
    Kim, Jong-Eun
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (13) : 4023 - 4039
  • [10] Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading: A Numerical Study
    Elnasri, Ibrahim
    Zhao, Han
    Design and Modeling of Mechanical Systems - II, 2015, : 387 - 396