Adaptive Multi-Scale Difference Graph Convolution Network for Skeleton-Based Action Recognition

被引:2
|
作者
Wang, Xiaojuan [1 ]
Gan, Ziliang [1 ]
Jin, Lei [1 ]
Xiao, Yabo [1 ]
He, Mingshu [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, 10 Xitucheng Rd, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
skeleton-based action recognition; graph convolution networks; difference convolution;
D O I
10.3390/electronics12132852
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph convolutional networks (GCNs) have obtained remarkable performance in skeleton-based action recognition. However, previous approaches fail to capture the implicit correlations between joints and handle actions across varying time intervals. To address these problems, we propose an adaptive multi-scale difference graph convolution Network (AMD-GCN), which comprises an adaptive spatial graph convolution module (ASGC) and a multi-scale temporal difference convolution module (MTDC). The first module is capable of acquiring data-dependent and channel-wise graphs that are adaptable to both samples and channels. The second module employs the multi-scale approach to model temporal information across a range of time scales. Additionally, the MTDC incorporates an attention-enhanced module and difference convolution to accentuate significant channels and enhance temporal features, respectively. Finally, we propose a multi-stream framework for integrating diverse skeletal modalities to achieve superior performance. Our AMD-GCN approach was extensively tested and proven to outperform the current state-of-the-art methods on three widely recognized benchmarks: the NTU-RGB+D, NTU-RGB+D 120, and Kinetics Skeleton datasets.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Multi-Scale Adaptive Graph Convolution Network for Skeleton-Based Action Recognition
    Hu, Huangshui
    Fang, Yue
    Han, Mei
    Qi, Xingshuo
    IEEE ACCESS, 2024, 12 : 16868 - 16880
  • [2] Multi-Scale Mixed Dense Graph Convolution Network for Skeleton-Based Action Recognition
    Xia, Hailun
    Gao, Xinkai
    IEEE ACCESS, 2021, 9 (09): : 36475 - 36484
  • [3] Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
    Yang, Huaigang
    Ren, Ziliang
    Yuan, Huaqiang
    Wei, Wenhong
    Zhang, Qieshi
    Zhang, Zhaolong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [4] Multi-Scale Adaptive Aggregate Graph Convolutional Network for Skeleton-Based Action Recognition
    Zheng, Zhiyun
    Wang, Yizhou
    Zhang, Xingjin
    Wang, Junfeng
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [5] Hierarchical adaptive multi-scale hypergraph attention convolution network for skeleton-based action recognition
    Yang, Honghong
    Wang, Sai
    Jiang, Lu
    Su, Yuping
    Zhang, Yumei
    APPLIED SOFT COMPUTING, 2025, 172
  • [6] Multi-scale skeleton simplification graph convolutional network for skeleton-based action recognition
    Fan, Zhang
    Ding, Chongyang
    Kai, Liu
    Liu, Hongjin
    IET COMPUTER VISION, 2024, 18 (07) : 992 - 1003
  • [7] Lighter and faster: A multi-scale adaptive graph convolutional network for skeleton-based action recognition
    Jiang, Yuanjian
    Deng, Hongmin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [8] Multi-Scale Structural Graph Convolutional Network for Skeleton-Based Action Recognition
    Jang, Sungjun
    Lee, Heansung
    Kim, Woo Jin
    Lee, Jungho
    Woo, Sungmin
    Lee, Sangyoun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7244 - 7258
  • [9] MSA-GCN: Exploiting Multi-Scale Temporal Dynamics With Adaptive Graph Convolution for Skeleton-Based Action Recognition
    Alowonou, Kowovi Comivi
    Han, Ji-Hyeong
    IEEE ACCESS, 2024, 12 : 193552 - 193563
  • [10] Multi-scale Dilated Attention Graph Convolutional Network for Skeleton-Based Action Recognition
    Shu, Yang
    Li, Wanggen
    Li, Doudou
    Gao, Kun
    Jie, Biao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT I, 2024, 14425 : 16 - 28