Enhanced detection accuracy and signal-to-noise ratio of surface plasmon resonance based refractive index sensor with the addition of thicker layer of Silicon

被引:2
|
作者
Kushwah, Himanshu [1 ]
Anand, Jagneet Kaur [1 ,2 ]
机构
[1] Univ Delhi, Keshav Mahavidyalaya, Delhi 110034, India
[2] Univ Delhi, Dept Elect, Keshav Mahavidyalaya, H-4-5 Zone, Delhi 110034, India
关键词
Surface plasmon resonance (SPR) based sensor; Transfer matrix method; Penetration depth; Detection accuracy; Signal to noise ratio; Figure of merit; FIBER-OPTIC SENSOR; SENSITIVITY ENHANCEMENT; WAVE-GUIDES; GRAPHENE; MODES; PROFILE; SINGLE; FIGURE; MERIT; FILM;
D O I
10.1016/j.optmat.2023.113862
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The improvement in the sensitivity performance of conventional surface plasmon resonance (SPR) based sensors with the addition of thin layers of various high index dielectrics (e.g. 5 nm-10 nm of Silicon) is well established. This improvement in sensitivity comes at a price of reduced detection accuracy, deteriorated signal-to-noise ratio (SNR) and small value of Figure of Merit (FOM). Sensors with high detection accuracy and SNR find applications in the direct detection of small molecular (few hundreds of Daltons) interactions or low molecular concentrations (physiological concentration) on the surface of the sensor. The current paper presents design methodology and theoretical analysis of the performance of SPR based refractive index sensor with enhanced SNR, detection accuracy, and FOM attained when a thicker layer of Silicon (60 nm-400 nm thickness) is introduced in the conventional Kretschmann configuration employing angular interrogation technique. The analysis is valid for any high index dielectric layer that is used to enhance the electromagnetic field associated with the surface plasmon (SP) mode excited at the metal-dielectric interface. In the present paper, we show that the SP mode which participates in the sensing applications can be excited at the metal-dielectric interface for multiple thicknesses of Silicon. Analytical expressions are derived to compute the multiple thicknesses of Silicon using a modal analysis as well as the transfer matrix method (TMM) by considering the SPR sensor as a multi-layered optical waveguide structure. The refractive index SPR sensor with thicker silicon layer is shown to exhibit a long propagation length and large penetration depth in the analyte region, resulting in a higher depth-to-width ratio (defined as the SNR) and detection accuracy in its SPR reflectivity spectrum, hence enhancing the measurement precision of the sensor.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection
    Patel, Shobhit K.
    Wekalao, Jacob
    Alsalman, Osamah
    Surve, Jaymit
    Parmar, Juveriya
    Taya, Sofyan A.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)
  • [2] Development of surface plasmon resonance sensor with enhanced sensitivity for low refractive index detection
    Shobhit K. Patel
    Jacob Wekalao
    Osamah Alsalman
    Jaymit Surve
    Juveriya Parmar
    Sofyan A. Taya
    Optical and Quantum Electronics, 2023, 55
  • [3] Extremely high signal-to-noise ratio surface plasmon resonance sensor using a monolithic prism sensor chip
    Naya, Masayuki
    Mori, Nobufumi
    Kimura, Toshihito
    Ohtsuka, Hisashi
    Kubo, Takashi
    Shimizu, Hitoshi
    JOURNAL OF NANOPHOTONICS, 2007, 1 (01)
  • [4] Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping
    Bhatia, Priya
    Gupta, Banshi D.
    OPTICS COMMUNICATIONS, 2013, 286 : 171 - 175
  • [5] Effect of Spectral Signal-to-Noise Ratio on Resolution Enhancement at Surface Plasmon Resonance
    Ma, Long
    Xia, Guo
    Jin, Shiqun
    Bai, Lihao
    Wang, Jiangtao
    Chen, Qiaoqin
    Cai, Xiaobo
    SENSORS, 2021, 21 (02) : 1 - 12
  • [6] Surface plasmon resonance based refractive index sensor for liquids
    Mehan, N
    Gupta, V
    Sreenivas, K
    Mansingh, A
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2005, 43 (11) : 854 - 858
  • [7] Terminated optical fiber sensor based on surface plasmon resonance for refractive index detection
    Iga, M
    Seki, A
    Watanabe, K
    SECOND EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS: PROCEEDINGS, 2004, 5502 : 230 - 233
  • [8] Surface plasmon resonance sensor for low refractive index detection based on microstructured fiber
    Wang, Jianshuai
    Pei, Li
    Wang, Ji
    Ruan, Zuliang
    Zheng, Jingjing
    Li, Jing
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (11) : 3104 - 3110
  • [9] Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor
    Sharma, AK
    Gupta, BD
    APPLIED OPTICS, 2006, 45 (01) : 151 - 161
  • [10] Enhanced refractive index sensing using a surface plasmon resonance sensor with heterostructure
    Kumar, Rajeev
    Agarwal, Sajal
    Pal, Sarika
    Prajapati, Yogendra Kumar
    Saini, J. P.
    MICRO AND NANOSTRUCTURES, 2023, 183