Robust Signal Recovery for High-Dimensional Linear Log-Contrast Models with Compositional Covariates

被引:3
|
作者
Han, Dongxiao [1 ,2 ]
Huang, Jian [3 ]
Lin, Yuanyuan [4 ]
Liu, Lei [5 ]
Qu, Lianqiang [6 ]
Sun, Liuquan [7 ,8 ]
机构
[1] Nankai Univ, Sch Stat & Data Sci, LPMC, KLMDASR, Tianjin, Peoples R China
[2] Nankai Univ, LEBPS, Tianjin, Peoples R China
[3] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[4] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[5] Washington Univ, Div Biostat, St Louis, MO 63110 USA
[6] Cent China Normal Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[7] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing, Peoples R China
[8] Guangzhou Univ, Sch Econ & Stat, Guangzhou, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Compositional data; Consistent estimation; Huber loss; Lasso; Support recovery; VARIABLE SELECTION; M-ESTIMATORS; ASYMPTOTIC-BEHAVIOR; REGRESSION; CONSISTENCY; PARAMETERS;
D O I
10.1080/07350015.2022.2097911
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this article, we propose a robust signal recovery method for high-dimensional linear log-contrast models, when the error distribution could be heavy-tailed and asymmetric. The proposed method is built on the Huber loss with l(1) penalization. We establish the l(1) and l(2) consistency for the resulting estimator. Under conditions analogous to the irrepresentability condition and the minimum signal strength condition, we prove that the signed support of the slope parameter vector can be recovered with high probability. The finite-sample behavior of the proposed method is evaluated through simulation studies, and applications to a GDP satisfaction dataset an HIV microbiome dataset are provided.
引用
收藏
页码:957 / 967
页数:11
相关论文
共 50 条