Generic spherically symmetric thin-shell wormholes with equilibrium throat at the innermost photonsphere are unstable

被引:2
|
作者
Mazharimousavi, S. Habib [1 ]
机构
[1] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Phys, Via Mersin 10, Famagusta, North Cyprus, Turkiye
来源
EUROPEAN PHYSICAL JOURNAL C | 2024年 / 84卷 / 03期
关键词
TRAVERSABLE WORMHOLES; STABILITY ANALYSIS; BLACK-HOLES;
D O I
10.1140/epjc/s10052-024-12678-w
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this research, we prove analytically that a generic spherically symmetric thin-shell wormhole (TSW) with its throat located at the innermost photonsphere of the bulk asymptotically flat black hole and supported by a generic surface barotropic perfect fluid is unstable against a radial linear perturbation. This is the generalization of the instability of the Schwarzschild TSW (STSW) with the throat's radius located at a0=3M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{0}=3M$$\end{document} that was revealed by Poisson and Visser in their seminal work (Poisson and Visser in Phys Rev D 52, 7318, 1995). where they studied the mechanical stability of STSW. Our proof provides a link between the instability of the null circular geodesics on the innermost photonsphere of a generic static spherically symmetric asymptotically black hole and the TSW constructed in the same bulk with a0=rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{0}=r_{c}$$\end{document} where a0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a_{0} $$\end{document} and rc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_{c}$$\end{document} are the radius of the TSW and the innermost photonsphere, respectively. For asymptotically flat spherically symmetric black holes possessing more than one photonspheres, the number of the photonspheres is odd and at least one photonsphere is stable which implies the corresponding TSW with its throat identical with the stable photonsphere is also stable.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Generic spherically symmetric thin-shell wormholes with equilibrium throat at the innermost photonsphere are unstable
    S. Habib Mazharimousavi
    The European Physical Journal C, 84
  • [2] Generic spherically symmetric dynamic thin-shell traversable wormholes in standard general relativity
    Montelongo Garcia, Nadiezhda
    Lobo, Francisco S. N.
    Visser, Matt
    PHYSICAL REVIEW D, 2012, 86 (04):
  • [3] Thermodynamics of spherically symmetric thin-shell spacetimes
    Kotopoulis, Demetrios
    Anastopoulos, Charis
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (22)
  • [4] Plane symmetric thin-shell wormholes: Solutions and stability
    Lemos, Jose P. S.
    Lobo, Francisco S. N.
    PHYSICAL REVIEW D, 2008, 78 (04):
  • [5] A note on the stability of generic spherically symmetric thin-shell wormhole supported by a false vacuum
    Mazharimousavi, S. Habib
    PHYSICS OF THE DARK UNIVERSE, 2023, 42
  • [6] Hypocycloidal throat for 2+1-dimensional thin-shell wormholes
    Mazharimousavi, S. Habib
    Halilsoy, M.
    EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (11): : 1 - 5
  • [7] Stability of charged thin-shell and thin-shell wormholes: a comparison
    Sharif, M.
    Javed, Faisal
    PHYSICA SCRIPTA, 2021, 96 (05)
  • [8] Cylindrical thin-shell wormholes
    Eiroa, EF
    Simeone, C
    PHYSICAL REVIEW D, 2004, 70 (04): : 6
  • [9] Stability of Thin-Shell Wormholes
    Sharif, M.
    Mumtaz, Saadia
    MATHEMATICAL PHYSICS, 2018, : 60 - 65
  • [10] Lovelock thin-shell wormholes
    Dehghani, M. H.
    Mehdizadeh, M. R.
    PHYSICAL REVIEW D, 2012, 85 (02):