An epidemiological model for computer virus with Atangana-Baleanu fractional derivative

被引:24
|
作者
Ravichandran, C. [1 ]
Logeswari, K. [1 ]
Khan, Aziz [2 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
Gomez-Aguilar, J. F. [5 ]
机构
[1] Kongunadu Arts & Sci Coll, Dept Math, Coimbatore 641029, Tamil Nadu, India
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] CONACyT Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Mittag-leffler kernel; ITID model; Numerical approximation; Fixed point theory; MITTAG-LEFFLER; MATHEMATICAL-MODELS; SIMULATIONS; EQUATION;
D O I
10.1016/j.rinp.2023.106601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Era of data is transubstantiating into a Big Data model in this technological world in the early 21st century. In 2005, Roger Mougalas coined a combination of data for this future world of the human race. The information helps to find specific solutions for any physical problem under Catastrophic circumstances in high populations such as Covid-19. To store massive data and historical events in a computer, the possibility of damage occurred to the complete data. Hence, viruses are a crucial threat to such data worth millions and billions. For this purpose, we spend enormous costs and efforts to build defensive strategies to save that information. Analyzing the expansion and extension of viruses helps to protect data and prevent viruses. In this manuscript, we study optimal control analysis for the suggested model in the sense of the Atangana-Baleanu derivative (AB-derivative). We employed a fixed point theorem to analyze the solutions for the fractional order computer virus model. We verified the results numerically and expressed them graphically.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Symmetry Analyses of Epidemiological Model for Monkeypox Virus with Atangana-Baleanu Fractional Derivative
    Gunasekar, Tharmalingam
    Manikandan, Shanmugam
    Govindan, Vediyappan
    Piriadarshani, D.
    Ahmad, Junaid
    Emam, Walid
    Al-Shbeil, Isra
    SYMMETRY-BASEL, 2023, 15 (08):
  • [2] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    SYMMETRY-BASEL, 2022, 14 (11):
  • [3] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [4] An epidemiological approach to insurgent population modeling with the Atangana-Baleanu fractional derivative
    Kolebaje, Olusola
    Popoola, Oyebola
    Khan, Muhammad Altaf
    Oyewande, Oluwole
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [5] Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative
    Almuqrin, M. A.
    Goswami, P.
    Sharma, S.
    Khan, I.
    Dubey, R. S.
    Khan, A.
    RESULTS IN PHYSICS, 2021, 26
  • [6] INVESTIGATING VIRUS SPREAD ANALYSIS IN COMPUTER NETWORKS WITH ATANGANA-BALEANU FRACTIONAL DERIVATIVE MODELS
    Ahmad, Imtiaz
    abu Bakar, Asmidar
    Ahmad, Hijaz
    Khan, Aziz
    Abdeljawad, Thabet
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (07N08)
  • [7] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    RESULTS IN PHYSICS, 2023, 53
  • [8] THE MATHEMATICAL NIPAH VIRUS MODEL WITH ATANGANA-BALEANU DERIVATIVE
    Ozioko, Arinze luke
    Malesela, Kekana
    Abang, Sunday igwe scott
    Fadugba, Sunday emmanuel
    Ogbuagu, Leonard ikenna
    Aja, Remigius okeke
    Mbah, Godwin christopher e.
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [9] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [10] Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
    Saif Ullah
    Muhammad Altaf Khan
    Muhammad Farooq
    The European Physical Journal Plus, 133