A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type

被引:4
|
作者
Nie, Dongming [1 ]
Riaz, Usman [2 ]
Begum, Sumbel [3 ]
Zada, Akbar [3 ]
机构
[1] Anhui Xinhua Univ, Dept Common Courses, Hefei 230088, Peoples R China
[2] Qurtuba Univ Sci & Informat Technol, Dept Phys & Numer Sci, Peshawar, Pakistan
[3] Univ Peshawar, Dept Math, Peshawar, Khyber Pakhtunk, Pakistan
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
p-Laplacian operator; coupled system of fractional differential equations; positive solutions; stability in the form of Ulam; HYERS-ULAM STABILITY;
D O I
10.3934/math.2023839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this article is to investigate a coupled implicit Caputo fractional pLaplacian system, depending on boundary conditions of integral type, by the substitution method. The Avery-Peterson fixed point theorem is utilized for finding at least three solutions of the proposed coupled system. Furthermore, different types of Ulam stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, are achieved. Finally, an example is provided to authenticate the theoretical result.
引用
收藏
页码:16417 / 16445
页数:29
相关论文
共 50 条
  • [1] ON A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN OPERATORS AND INTEGRAL BOUNDARY CONDITIONS
    Luca, Rodica
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 66 (3-4): : 749 - 766
  • [2] On Coupled p-Laplacian Fractional Differential Equations with Nonlinear Boundary Conditions
    Khan, Aziz
    Li, Yongjin
    Shah, Kamal
    Khan, Tahir Saeed
    COMPLEXITY, 2017,
  • [3] Positive solutions of p-Laplacian fractional differential equations with integral boundary value conditions
    Li, Yunhong
    Li, Guogang
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 717 - 726
  • [4] The eigenvalue problem for a coupled system of singular p-Laplacian differential equations involving fractional differential-integral conditions
    He, Ying
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [5] The eigenvalue problem for a coupled system of singular p-Laplacian differential equations involving fractional differential-integral conditions
    Ying He
    Advances in Difference Equations, 2016
  • [6] Positive Solutions for Singular p-Laplacian Fractional Differential System with Integral Boundary Conditions
    Wang, Liping
    Zhou, Zongfu
    Zhou, Hui
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] On Nonlinear Implicit Fractional Differential Equations with Integral Boundary Condition Involving p-Laplacian Operator without Compactness
    Shah, K.
    Hussain, W.
    Thounthong, P.
    Borisut, P.
    Kumam, P.
    Arif, M.
    THAI JOURNAL OF MATHEMATICS, 2018, 16 : 301 - 321
  • [8] Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions
    Hira Waheed
    Akbar Zada
    Rizwan Rizwan
    Ioan-Lucian Popa
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [9] Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance
    Zhou Hui
    Zhou Zong-fu
    Wang Li-ping
    Communications in Mathematical Research, 2017, 33 (01) : 33 - 52
  • [10] BOUNDARY VALUE PROBLEM FOR A COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN OPERATOR AT RESONANCE
    Cheng, Lingling
    Liu, Wenbin
    Ye, Qingqing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,