Noise-insensitive discriminative subspace fuzzy clustering

被引:2
|
作者
Zhi, Xiaobin [1 ]
Yu, Tongjun [2 ]
Bi, Longtao [2 ]
Li, Yalan [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Peoples R China
[2] Xian Univ Posts & Telecommun, Sch Commun & Informat Engn, Xian, Peoples R China
基金
美国国家科学基金会;
关键词
Subspace clustering; linear discriminant analysis; least squares regression; fuzzy clustering; noise-insensitivity; C-MEANS; ALGORITHM; EFFICIENT;
D O I
10.1080/02664763.2021.1937583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Discriminative subspace clustering (DSC) can make full use of linear discriminant analysis (LDA) to reduce the dimension of data and achieve effective clustering high-dimension data by clustering low-dimension data in discriminant subspace. However, most existing DSC algorithms do not consider the noise and outliers that may be contained in data sets, and when they are applied to the data sets with noise or outliers, and they often obtain poor performance due to the influence of noise and outliers. In this paper, we address the problem of the sensitivity of DSC to noise and outlier. Replacing the Euclidean distance in the objective function of LDA by an exponential non-Euclidean distance, we first develop a noise-insensitive LDA (NILDA) algorithm. Then, combining the proposed NILDA and a noise-insensitive fuzzy clustering algorithm: AFKM, we propose a noise-insensitive discriminative subspace fuzzy clustering (NIDSFC) algorithm. Experiments on some benchmark data sets show the effectiveness of the proposed NIDSFC algorithm.
引用
收藏
页码:659 / 674
页数:16
相关论文
共 50 条
  • [1] A NOISE-INSENSITIVE MOTION DETECTOR
    KOIVUNEN, T
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1992, 38 (03) : 168 - 174
  • [2] NOISE-INSENSITIVE MONOSTABLE MULTIVIBRATORS
    FARIS, EG
    ELECTRONIC ENGINEER, 1970, 29 (06): : 110 - &
  • [3] Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering
    Wen, Zaidao
    Hou, Biao
    Wu, Qian
    Jiao, Licheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (08) : 2218 - 2231
  • [4] A noise-insensitive object tracking algorithm
    Hua, Chunsheng
    Chen, Qian
    Wu, Haiyuan
    Wada, Toshikazu
    COMPUTER VISION - ACCV 2007, PT I, PROCEEDINGS, 2007, 4843 : 565 - 575
  • [5] Discriminative Subspace Clustering
    Zografos, Vasileios
    Ellis, Liam
    Mester, Rudolf
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2107 - 2114
  • [6] Robust and Noise-Insensitive Recursive Maximum Correntropy-Based Evolving Fuzzy System
    Rong, Hai-Jun
    Yang, Zhi-Xin
    Wong, Pak Kin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (09) : 2277 - 2284
  • [7] NOISE-INSENSITIVE ITERATIVE METHOD FOR INTERFEROGRAM PROCESSING
    KOTLYAR, VV
    SERAPHIMOVICH, PG
    ZALYALOV, OK
    OPTICS AND LASER TECHNOLOGY, 1995, 27 (04): : 251 - 254
  • [8] Discriminative and coherent subspace clustering
    Chen, Huazhu
    Wang, Weiwei
    Feng, Xiangchu
    He, Ruiqiang
    NEUROCOMPUTING, 2018, 284 : 177 - 186
  • [9] Noise-insensitive digital BIST for any PLL or DLL
    Sunter, Stephen
    Roy, Aubin
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2008, 24 (05): : 461 - 472
  • [10] New wavelet transforms for noise-insensitive edge detection
    Song, FJ
    Jutamulia, S
    OPTICAL ENGINEERING, 2002, 41 (01) : 50 - 54