A Lightweight Multi-Branch Context Network for Unsupervised Underwater Image Restoration

被引:0
|
作者
Wang, Rong [1 ]
Zhang, Yonghui [1 ]
Zhang, Yulu [1 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
关键词
lightweight; unsupervised learning; underwater image restoration; deep learning; ENHANCEMENT; MODEL;
D O I
10.3390/w16050626
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Underwater images commonly experience degradation caused by light absorption and scattering in water. Developing lightweight and efficient neural networks to restore degraded images is challenging because of the difficulty in obtaining high-quality paired images and the delicate trade-off between model performance and computational demands. To provide a lightweight and efficient solution for restoring images in terms of color, structure, texture details, etc., enabling the underwater image restoration task to be applied in real-world scenes, we propose an unsupervised lightweight multi-branch context network. Specifically, we design two lightweight multi-branch context subnetworks that enable multiple receptive field feature extraction and long-range dependency modeling to estimate scene radiance and transmission maps. Gaussian blur is adopted to approximate the global background light on the twice-downsampled degraded image. We design a comprehensive loss function that incorporates multiple components, including self-supervised consistency loss and reconstruction loss, to train the network using degraded images in an unsupervised learning manner. Experiments on several underwater image datasets demonstrate that our approach realizes good performance with very few model parameters (0.12 M), and is even comparable to state-of-the-art methods (up to 149 M) in color correction and contrast restoration.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A lightweight multi-branch network for low-light image enhancement
    Yu, Youjiang
    Yuan, Cheng
    Zhang, Kaibing
    Wang, Xiaohua
    ELECTRONICS LETTERS, 2023, 59 (09)
  • [2] Progressive multi-branch embedding fusion network for underwater image enhancement
    Sun, Kaichuan
    Meng, Fei
    Tian, Yubo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 87
  • [3] Progressive multi-branch embedding fusion network for underwater image enhancement
    Sun, Kaichuan
    Meng, Fei
    Tian, Yubo
    Journal of Visual Communication and Image Representation, 2022, 87
  • [4] Unsupervised multi-branch network with high-frequency enhancement for image dehazing
    Sun, Hang
    Luo, Zhiming
    Ren, Dong
    Du, Bo
    Chang, Laibin
    Wan, Jun
    PATTERN RECOGNITION, 2024, 156
  • [5] A Multi-Branch Feature Extraction Residual Network for Lightweight Image Super-Resolution
    Liu, Chunying
    Wan, Xujie
    Gao, Guangwei
    MATHEMATICS, 2024, 12 (17)
  • [6] Attention-guided dynamic multi-branch neural network for underwater image enhancement
    Yan, Xiaohong
    Qin, Wenqiang
    Wang, Yafei
    Wang, Guangyuan
    Fu, Xianping
    KNOWLEDGE-BASED SYSTEMS, 2022, 258
  • [7] LIGHTWEIGHT MULTI-BRANCH NETWORK FOR PERSON RE-IDENTIFICATION
    Herzog, Fabian
    Ji, Xunbo
    Teepe, Torben
    Hoermann, Stefan
    Gilg, Johannes
    Rigoll, Gerhard
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1129 - 1133
  • [8] Unsupervised medical image synthesis based on multi-branch attention structure
    Hu, Yibo
    Zhang, Shiang
    Li, Wentao
    Sun, Jianqi
    Xu, Lisa X.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 104
  • [9] Multi-branch fusion network for hyperspectral image classification
    Gao, Hongmin
    Yang, Yao
    Lei, Sheng
    Li, Chenming
    Zhou, Hui
    Qu, Xiaoyu
    KNOWLEDGE-BASED SYSTEMS, 2019, 167 : 11 - 25
  • [10] Multi-Branch Convolutional Network for Context-Aware Recommendation
    Guo, Wei
    Zhang, Can
    Guo, Huifeng
    Tang, Ruiming
    He, Xiuqiang
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 1709 - 1712