On geometric interpretations of split quaternions

被引:2
|
作者
Ozturk, Iskender [1 ]
Ozdemir, Mustafa [1 ]
机构
[1] Akdeniz Univ, Dept Math, Antalya, Turkey
关键词
Lorentzian geometry; non-euclidean rotations; quaternions; split quaternions (coquaternions); COMPLEX NUMBER; ROTATIONS; MOTIONS;
D O I
10.1002/mma.8518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quaternions are an important tool that provides a convenient and effective mathematical method for representing reflections and rotations in three-dimensional space. A unit timelike split quaternion represents a rotation in the Lorentzian space. In this paper, we give some geometric interpretations of split quaternions for lines and planes in the Minkowski 3-space with the help of mutual pseudo orthogonal planes. We classified mutual planes with respect to the casual character of the normals of the plane as follows; if the normal is timelike, then the mutual plane is isomorphic to the complex plane; if the normal is spacelike, then the plane is isomorphic to the hyperbolic number plane (Lorentzian plane); if the normal is lightlike, then the plane is isomorphic to the dual number plane (Galilean plane).
引用
收藏
页码:408 / 422
页数:15
相关论文
共 50 条
  • [1] Compact complex surfaces with geometric structures related to split quaternions
    Davidov, Johann
    Grantcharov, Gueo
    Mushkarov, Oleg
    Yotov, Miroslav
    NUCLEAR PHYSICS B, 2012, 865 (02) : 330 - 352
  • [2] Involutions of Complexified Quaternions and Split Quaternions
    Bekar, Murat
    Yayli, Yusuf
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (02) : 283 - 299
  • [3] Involutions of Complexified Quaternions and Split Quaternions
    Murat Bekar
    Yusuf Yaylı
    Advances in Applied Clifford Algebras, 2013, 23 : 283 - 299
  • [4] QUANTUM SPLIT QUATERNIONS
    Ozavsar, Muttalip
    Ozkan, Erdogan Mehmet
    JOURNAL OF SCIENCE AND ARTS, 2021, (04): : 1003 - 1010
  • [5] Split Fibonacci Quaternions
    Mahmut Akyiğit
    Hidayet Hüda Kösal
    Murat Tosun
    Advances in Applied Clifford Algebras, 2013, 23 : 535 - 545
  • [6] Split Fibonacci Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 535 - 545
  • [7] QUANTUM SPLIT QUATERNIONS
    Ozavsar, Muttalip
    Ozkan, Erdogan Mehmet
    JOURNAL OF SCIENCE AND ARTS, 2022, (04): : 1003 - 1010
  • [8] Geometric Integration of Quaternions
    Andrle, Michael S.
    Crassidis, John L.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2013, 36 (06) : 1762 - 1767
  • [9] GEOMETRIC THEORY OF QUATERNIONS
    EBERLEIN, WF
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09): : 952 - &
  • [10] On geometric applications of quaternions
    Demirci, Burcu Bektas
    Aghayev, Nazim
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (04) : 1289 - 1303