A Synthetic Integrated Wireless Aerodynamic Evaluation System for Train-Bridge System

被引:1
|
作者
Zou, Simin [1 ,2 ]
He, Xuhui [1 ,2 ,3 ]
Wang, Hanfeng [1 ,2 ]
机构
[1] Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R China
[2] Natl Engn Lab High Speed Railway Construct, Changsha 410075, Peoples R China
[3] Hunan Prov Key Lab Disaster Prevent & Mitigat Rail, Changsha 410075, Peoples R China
基金
中国博士后科学基金;
关键词
High-speed railway; train; bridge; moving-train and infrastructure rig; data acquisition; aerodynamic characteristics; HIGH-SPEED TRAIN; FORCE-BALANCE; RAIL VEHICLES; WIND; BEHAVIOR; VIADUCT;
D O I
10.1142/S0219455423400345
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The development of high-speed railway networks and the increased running speeds of high-speed trains (HSTs) have made the aerodynamic interference between HSTs and their surrounding environments increasingly important. Compared with a traditional wind tunnel test, systematically understanding the aerodynamic characteristics of HSTs involves relatively more stringent requirements, highlighting the need to develop experimental methods and technologies with enhanced dynamic performance. Central South University (CSU) developed a wireless data acquisition system, named as the in-model sensory and wireless data acquisition - remote control and processing system (ISWDA-RCPS), which can operate onboard a novel moving train and infrastructure rig. The system was developed to meet current wind tunnel data collection needs, and it avoids the physical cables used in conventional devices, which are extremely susceptible to induced noise. The system accepts inputs from various sensors and transfers the data wirelessly to an access point outside a wind tunnel's test section. To analyze the feasibility of the ISWDA-RCPS concerning its sensing capabilities and wireless communications, we conduct experiments in multiple operating conditions. Finally, pressure measurements are acquired from a moving Fuxing HST model at different points and used to analyze the aerodynamic behavior of the model.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] The effect of moving train on the aerodynamic performances of train-bridge system with a crosswind
    Yao, Zhiyong
    Zhang, Nan
    Chen, Xinzhong
    Zhang, Cheng
    Xia, He
    Li, Xiaozhen
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2020, 14 (01) : 222 - 235
  • [2] Aerodynamic performance of a novel wind barrier for train-bridge system
    He, Xuhui
    Shi, Kang
    Wu, Teng
    Zou, Yunfeng
    Wang, Hanfeng
    Qin, Hongxi
    WIND AND STRUCTURES, 2016, 23 (03) : 2 - 20
  • [3] Wind Tunnel Test on Aerodynamic Characteristics of Moving Train-bridge System
    Zou S.
    He X.
    Zou Y.
    Shi K.
    Ou J.
    Tiedao Xuebao/Journal of the China Railway Society, 2021, 43 (12): : 30 - 37
  • [4] Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system
    WeiWei Guo
    YuJing Wang
    He Xia
    Shan Lu
    Science China Technological Sciences, 2015, 58 : 219 - 225
  • [5] Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system
    GUO Wei Wei
    WANG Yu Jing
    XIA He
    LU Shan
    Science China(Technological Sciences), 2015, 58 (02) : 219 - 225
  • [6] Effect of wind barriers on the flow field and aerodynamic forces of a train-bridge system
    He, Xuhui
    Zhou, Lei
    Chen, Zhengwei
    Jing, Haiquan
    Zou, Yunfeng
    Wu, Teng
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2019, 233 (03) : 283 - 297
  • [7] Parametric Study on the Aerodynamic Characteristics of Wind Guide Barriers for a Train-Bridge System
    Guo, Dianyi
    Jiang, Shuo
    Zou, Yunfeng
    He, Xuhui
    Liu, Qingkuan
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [8] Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system
    GUO Wei Wei
    WANG Yu Jing
    XIA He
    LU Shan
    Science China(Technological Sciences), 2015, (02) : 219 - 225
  • [9] Wind tunnel test on aerodynamic effect of wind barriers on train-bridge system
    Guo WeiWei
    Wang YuJing
    Xia He
    Lu Shan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2015, 58 (02) : 219 - 225
  • [10] Wind Tunnel Test of Aerodynamic Force Characteristics on Train-bridge System in the Presence of Turbulence
    Zuo T.-H.
    He X.-H.
    Zou Y.-F.
    Zhou J.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2019, 32 (10): : 178 - 190