Transition Time Determination of Single-Molecule FRET Trajectories via Wasserstein Distance Analysis in Steady-State Variations in smFRET (WAVE)

被引:0
|
作者
Chen, Ting [1 ]
Gao, Fengnan [2 ,3 ]
Tan, Yan-Wen [1 ]
机构
[1] Fudan Univ, Multiscale Res Inst Complex Syst, Dept Phys, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[3] Fudan Univ, Sch Data Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2023年 / 127卷 / 37期
基金
中国国家自然科学基金;
关键词
DYNAMICS; MODEL;
D O I
10.1021/acs.jpcb.3c02498
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Many biological molecules respond to external stimuli that can cause their conformational states to shift from one steady state to another. Single-molecule FRET (Fluorescence Resonance Energy Transfer) is of particular interest to not only define the steady-state conformational ensemble usually averaged out in the ensemble of molecules but also characterize the dynamics of biomolecules. To study steady-state transitions, i.e., non-equilibrium transitions, a data analysis methodology is necessary to analyze single-molecule FRET photon trajectories, which contain mixtures of contributions from two steady-state statuses and include non-equilibrium transitions. In this study, we introduce a novel methodology called WAVE (Wasserstein distance Analysis in steady-state Variations in smFRET) to detect and locate non-equilibrium transition positions in FRET trajectories. Our method first utilizes a combined STaSI-HMM (Stepwise Transitions with State Inference Hidden Markov Model) algorithm to convert the original FRET trajectories into discretized trajectories. We then apply Maximum Wasserstein Distance analysis to differentiate the FRET state compositions of the fitting trajectories before and after the non-equilibrium transition. Forward and backward algorithms, based on the Minimum Description Length (MDL) principle, are used to find the refined positions of the non-equilibrium transitions. This methodology allows us to observe changes in experimental conditions in chromophore-tagged biomolecules or vice versa.
引用
收藏
页码:7819 / 7828
页数:10
相关论文
共 2 条
  • [1] ANALYSIS OF COMPLEX SINGLE-MOLECULE FRET TIME TRAJECTORIES
    Blanco, Mario
    Walter, Nils G.
    METHODS IN ENZYMOLOGY, VOL 472: SINGLE MOLECULE TOOLS, PT A: FLUORESCENCE BASED APPROACHES, 2010, 472 : 153 - 178
  • [2] RNA Junctions Structure and Distance Determination via Accurate Single-Molecule High-Precision FRET Measurements
    Doroshenko, Olga
    Vardanyan, Hayk
    Froebel, Sasha
    Kalinin, Stanislav
    Sindbert, Simon
    Opanasyuk, Oleg
    Hanke, Christian
    Mueller, Sabine
    Gohlke, Holger
    Seidel, Claus A. M.
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 236A - 236A