This study aimed to investigate the strength and permeability properties of binary and ternary systems for producing concrete mixes with a cure time of 7, 28, 90, and 180 days under high ambient temperatures (about 35-45 degrees C). The key variables were silica fume (SF) and fly ash (FA) and the water-to-binder ratio (0.18 to 0.55) needed for cementitious systems of normal to ultra-high-performance concrete (UHPC). The tests were conducted under BS 1881 and ASTM C 1202. Further, a parametric study was conducted using isoresponse curves and predictive models developed in the study. After 28 days with 5% SF, the SF-binary concrete mixes showed significant gains in compressive strength, while 10% and 15% showed no significant gains. With a water-binder ratio of 0.55, concrete showed slightly higher strength gains than concrete with ratios of 0.16, 0.25, and 0.40. A 5% SF addition to 0.25-based concrete reduced permeability by 70%, which was marginal for 10% and 15%. However, higher SF content did not significantly affect concrete permeability with water-binder ratios of 0.55 and 0.40. The SF-FA ternary cementitious system of UHPC resulted in negligible permeability. With the developed model, the predicted-tested strength and permeability ratio was between 0.96 and 1.01. The isoresponse pattern of permeability changes at 6% SF content, while adding SF increases permeability significantly. The parametric analysis revealed that strength development deteriorates after 120 days regardless of whether SF is added at 10% or 15%.