Automated Data Transformation and Feature Extraction for Oxygenation-Sensitive Cardiovascular Magnetic Resonance Images

被引:0
|
作者
Plasa, Glisant [1 ,2 ,3 ]
Hillier, Elizabeth [1 ,4 ]
Luu, Judy [1 ]
Boutet, Dominic [2 ]
Benovoy, Mitchel [1 ,3 ]
Friedrich, Matthias G. [1 ,5 ]
机构
[1] McGill Univ, Res Inst, Ctr Hlth, Montreal, PQ, Canada
[2] McGill Univ, Fac Sci, Neurosci, Montreal, PQ, Canada
[3] Area 19 Med, Montreal, PQ, Canada
[4] McGill Univ, Fac Med & Dent, Dept Med & Hlth Sci, Montreal, PQ, Canada
[5] McGill Univ, Dept Med & Diagnost Radiol, Ctr Hlth, 1001 Decarie Blvd, Montreal, PQ H4A 3J1, Canada
关键词
Oxygenation-sensitive cardiovascular magnetic resonance; Machine learning for medical imaging; Magnetic resonance imaging; Coronary vascular function;
D O I
10.1007/s12265-023-10474-7
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) is a novel, powerful tool for assessing coronary function in vivo. The data extraction and analysis however are labor-intensive. The objective of this study was to provide an automated approach for the extraction, visualization, and biomarker selection of OS-CMR images. We created a Python-based tool to automate extraction and export of raw patient data, featuring 3336 attributes per participant, into a template compatible with common data analytics frameworks, including the functionality to select predictive features for the given disease state. Each analysis was completed in about 2 min. The features selected by both ANOVA and MIC significantly outperformed (p<0.001) the null set and complete set of features in two datasets, with mean AUROC scores of 0.89eatures f 0.94lete set of features in two datasets, with mean AUROC scores that our tool is suitable for automated data extraction and analysis of OS-CMR images.
引用
收藏
页码:705 / 715
页数:11
相关论文
共 50 条
  • [1] Oxygenation-sensitive cardiovascular magnetic resonance
    Friedrich, Matthias G.
    Karamitsos, Theodoros D.
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2013, 15
  • [2] Oxygenation-sensitive cardiovascular magnetic resonance
    Matthias G Friedrich
    Theodoros D Karamitsos
    Journal of Cardiovascular Magnetic Resonance, 15
  • [3] The impact of hematocrit on oxygenation-sensitive cardiovascular magnetic resonance
    Guensch, Dominik P.
    Nadeshalingam, Gobinath
    Fischer, Kady
    Stalder, Aurelien F.
    Friedrich, Matthias G.
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18
  • [4] Effects of myoglobin oxygenation on oxygenation-sensitive cardiovascular magnetic resonance images: an in-vitro study
    Michel, M.
    Gulac, P.
    Fischer, K.
    Jung, B.
    Longnus, S. L.
    Guensch, D. P.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2019, 20 : 1 - 2
  • [5] The impact of hematocrit on oxygenation-sensitive cardiovascular magnetic resonance
    Dominik P. Guensch
    Gobinath Nadeshalingam
    Kady Fischer
    Aurelien F. Stalder
    Matthias G. Friedrich
    Journal of Cardiovascular Magnetic Resonance, 18
  • [6] Oxygenation-sensitive cardiac magnetic resonance imaging
    Weberling, L. D.
    Friedrich, M. G.
    RADIOLOGIE, 2022, 62 (11): : 971 - 976
  • [7] Myocardial Oxygenation in Hibernating Myocardium Insights From Oxygenation-Sensitive Cardiovascular Magnetic Resonance Imaging
    Ananthakrishna, Rajiv
    Raman, Karthigesh Sree
    Shah, Ranjit
    Woodman, Richard J.
    Walls, Angela
    Bradbrook, Craig
    Grover, Suchi
    Selvanayagam, Joseph B.
    JACC-CARDIOVASCULAR IMAGING, 2022, 15 (07) : 1351 - 1353
  • [8] Physiological noise in oxygenation-sensitive magnetic resonance imaging
    Krüger, G
    Glover, GH
    MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (04) : 631 - 637
  • [9] Theoretical noise model for oxygenation-sensitive magnetic resonance imaging
    Wu, GH
    Li, SJ
    MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) : 1046 - 1054
  • [10] Relationship between myocardial oxygenation and blood pressure: Experimental validation using oxygenation-sensitive cardiovascular magnetic resonance
    Guensch, Dominik P.
    Fischer, Kady
    Jung, Christof
    Hurni, Samuel
    Winkler, Bernhard M.
    Jung, Bernd
    Vogt, Andreas P.
    Eberle, Balthasar
    PLOS ONE, 2019, 14 (01):