Risk-Awareness in Learning Neural Controllers for Temporal Logic Objectives

被引:2
|
作者
Hashemi, Navid [1 ]
Qin, Xin [1 ]
Deshmukh, Jyotirmoy V. [1 ]
Fainekos, Georgios [2 ]
Hoxha, Bardh [2 ]
Prokhorov, Danil [2 ]
Yamaguchi, Tomoya [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Toyota Motor North Amer R&D, Saline, MI USA
基金
美国国家科学基金会;
关键词
D O I
10.23919/ACC55779.2023.10156345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the problem of synthesizing a controller in the presence of uncertainty such that the resulting closed-loop system satisfies certain hard constraints while optimizing certain (soft) performance objectives. We assume that the hard constraints encoding safety or mission-critical specifications are expressed using Signal Temporal Logic (STL), while performance is quantified using standard cost functions on system trajectories. To ensure satisfaction of the STL constraints, we algorithmically obtain control barrier functions (CBFs) from the STL specifications. We model controllers as neural networks (NNs) and provide an algorithm to train the NN parameters to simultaneously optimize the performance objectives while satisfying the CBF conditions (with a user-specified robustness margin). We evaluate the risk incurred by the trade-off between the robustness margin of the system and its performance using the formalism of risk measures. We demonstrate our approach on challenging nonlinear control examples such as quadcopter motion planning and a unicycle.
引用
收藏
页码:4096 / 4103
页数:8
相关论文
共 50 条
  • [1] Verified Compositions of Neural Network Controllers for Temporal Logic Control Objectives
    Wang, Jun
    Kalluraya, Samarth
    Kantaros, Yiannis
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 4004 - 4009
  • [2] Robot Risk-Awareness by Formal Risk Reasoning and Planning
    Xiao, Xuesu
    Dufek, Jan
    Murphy, Robin R.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 2856 - 2863
  • [3] Tractable Reinforcement Learning of Signal Temporal Logic Objectives
    Venkataraman, Harish
    Aksaray, Derya
    Seiler, Peter
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 308 - 317
  • [4] Accelerated Reinforcement Learning for Temporal Logic Control Objectives
    Kantaros, Yiannis
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 5077 - 5082
  • [5] A Temporal Logic for Programmable Logic Controllers
    Garanina, N. O.
    Anureev, I. S.
    Zyubin, V. E.
    Staroletov, S. M.
    Liakh, T. V.
    Rozov, A. S.
    Gorlatch, S. P.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (07) : 763 - 775
  • [6] A Temporal Logic for Programmable Logic Controllers
    N. O. Garanina
    I. S. Anureev
    V. E. Zyubin
    S. M. Staroletov
    T. V. Liakh
    A. S. Rozov
    S. P. Gorlatch
    Automatic Control and Computer Sciences, 2021, 55 : 763 - 775
  • [7] Firearm violence: A risk-awareness survey of urban teenagers
    Arabshahi, B
    Acquavella, AP
    JOURNAL OF ADOLESCENT HEALTH, 2002, 30 (02) : 116 - 116
  • [8] Risk-awareness of cutaneous malignancies among rural populations
    Moore, J
    Zelen, D
    Hafeez, I
    Ganti, AK
    Beal, J
    Potti, A
    MEDICAL ONCOLOGY, 2003, 20 (04) : 369 - 373
  • [9] RISKS AND RISK-AWARENESS IN USING NONPRESCRIBED AND PRESCRIBED MEDICINES
    GUTSCHER, H
    SOZIAL-UND PRAVENTIVMEDIZIN, 1986, 31 (03): : 141 - 150
  • [10] Risk-awareness of cutaneous malignancies among rural populations
    John Moore
    Dan Zelen
    Imran Hafeez
    Apar Kishor Ganti
    James Beal
    Anil Potti
    Medical Oncology, 2003, 20 : 369 - 373