Asymptotic Analysis of Sturm-Liouville Problem with Dirichlet and Nonlocal Two-Point Boundary Conditions

被引:3
|
作者
Stikonas, Arturas [1 ]
Sen, Erdogan [2 ]
机构
[1] Vilnius Univ, Inst Appl Math, Naugarduko g 24, LT-03225 Vilnius, Lithuania
[2] Tekirdag Namik Kemal Univ, Kampus Str 1, TR-59030 Tekirdag, Turkiye
关键词
Sturm-Liouville problem; Dirichlet condition; two-point nonlocal conditions; asymptotics of eigenvalues and eigenfunctions; EIGENVALUE PARAMETER; SPECTRUM CURVES; EIGENFUNCTIONS;
D O I
10.3846/mma.2023.17617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we obtain asymptotic expansions for eigenvalues and eigen-functions of the one-dimensional Sturm-Liouville equation with one classical Dirich-let type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for eigenvalues and de-rive asymptotic expansions of arbitrary order. We apply the obtained results to the problem with two-point nonlocal boundary condition.
引用
收藏
页码:308 / 329
页数:22
相关论文
共 50 条