JALNet: joint attention learning network for RGB-D salient object detection

被引:1
|
作者
Gao, Xiuju [1 ]
Cui, Jianhua [2 ]
Meng, Jin [2 ]
Shi, Huaizhong [2 ]
Duan, Songsong [3 ]
Xia, Chenxing [3 ]
机构
[1] Anhui Univ Sci & Technol, Sch Elect & Informat Engn, Huainan, Anhui, Peoples R China
[2] China Tobacco Henan Ind Co Ltd, Anyang Cigarette Factory, Anyang, Henan, Peoples R China
[3] Anhui Univ Sci & Technol, Coll Comp Sci & Engn, Huainan, Anhui, Peoples R China
基金
安徽省自然科学基金; 美国国家科学基金会;
关键词
salient object detection; depth map; bi-directional complementarity;
D O I
10.1504/IJCSE.2024.136249
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The existing RGB-D saliency object detection (SOD) methods mostly explore the complementary information between depth features and RGB features. However, these methods ignore the bi-directional complementarity between RGB and depth features. From this view, we propose a joint attention learning network (JALNet) to learn the cross-modal mutual complementary effect between the RGB images and depth maps. Specifically, two joint attention learning networks are designed, namely, a cross-modal joint attention fusion module (JAFM) and a joint attention enhance module (JAEM), respectively. The JAFM learns cross-modal complementary information from the RGB and depth features, which can strengthen the interaction of information and complementarity of useful information. At the same time, we utilise the JAEM to enlarge receptive field information to highlight salient objects. We conducted comprehensive experiments on four public datasets, which proved that the performance of our proposed JALNet outperforms 16 state-of-the-art (SOTA) RGB-D SOD methods.
引用
收藏
页码:36 / 47
页数:13
相关论文
共 50 条
  • [1] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [2] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [3] Hybrid-Attention Network for RGB-D Salient Object Detection
    Chen, Yuzhen
    Zhou, Wujie
    APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [4] Bidirectional feature learning network for RGB-D salient object detection
    Niu, Ye
    Zhou, Sanping
    Dong, Yonghao
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    PATTERN RECOGNITION, 2024, 150
  • [5] A multiple-attention refinement network for RGB-D salient object detection
    Jiang, Zijian
    Yu, Ling
    Li, Junru
    Niu, Fanglin
    IET IMAGE PROCESSING, 2024, 18 (14) : 4551 - 4562
  • [6] LIANet: Layer Interactive Attention Network for RGB-D Salient Object Detection
    Han, Yibo
    Wang, Liejun
    Du, Anyu
    Jiang, Shaochen
    IEEE ACCESS, 2022, 10 : 25435 - 25447
  • [7] Heterogeneous Fusion and Integrity Learning Network for RGB-D Salient Object Detection
    Gao, Haorao
    Su, Yiming
    Wang, Fasheng
    Li, Haojie
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (07)
  • [8] A deep multimodal feature learning network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 92 (92)
  • [9] A cascaded refined rgb-d salient object detection network based on the attention mechanism
    Zong, Guanyu
    Wei, Longsheng
    Guo, Siyuan
    Wang, Yongtao
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13527 - 13548
  • [10] A cascaded refined rgb-d salient object detection network based on the attention mechanism
    Guanyu Zong
    Longsheng Wei
    Siyuan Guo
    Yongtao Wang
    Applied Intelligence, 2023, 53 : 13527 - 13548