Two-dimensional biaxial magnetic field imaging with millisecond resolution

被引:0
|
作者
Lu, Fei [1 ,3 ,4 ]
Li, Bo [2 ]
Wang, Shuying [1 ,3 ,4 ]
Hu, Zhaohui [1 ,2 ,3 ,4 ]
Ye, Mao [1 ,2 ,3 ,4 ]
Lu, Jixi [1 ,2 ,3 ,4 ]
Han, Bangcheng [1 ,2 ,3 ,4 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Key Lab Ultraweak Magnet Field Measurement Technol, Minist Educ, Beijing 100191, Peoples R China
[2] Hangzhou Extremely Weak Magnet Field Major Sci & T, Hangzhou 310051, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310051, Peoples R China
[4] Beihang Univ, Hangzhou Innovat Inst, Zhejiang Prov Key Lab Ultraweak Magnet Field Space, Hangzhou 310051, Peoples R China
关键词
Spin-exchange relaxation-free (SERF) atomic; magnetometer; Magnetic field imaging; Millisecond resolution; Multi-axial sensitivity; ATOMIC MAGNETOMETER;
D O I
10.1016/j.measurement.2023.113423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-axial dynamic magnetic field imaging with femto-Tesla sensitivity paves a promising route for acquiring comprehensive information of the extremely-weak magnetic source. Here we propose a two-dimensional (2D) scanning imaging configuration that can realize rapid biaxial magnetic field measurement. Based on the Bragg diffraction, the configuration utilizes two orthogonally-arranged acousto-optic modulators to scan the probe laser temporally and spatially, realizing a 2D (7 x 7 pixels) magnetic field detection. To solve the multi-axial dynamic magnetic field imaging problem, a non-modulated time-sharing technique is theoretically and experimentally verified. Profiting from the non-modulated biaxial working mode that avoids long demodulation time, the magnetometer realizes millisecond temporal resolution (17.15 ms) for each sensitive axis. Operation in the spin-exchange relaxation-free regime, the single-pixel measurement sensitivity reaches around 2.6 fT/Hz1/2 (yaxis) and 7.5 fT/Hz1/2 (z-axis). Furthermore, weak pump and probe lasers power (500 mu W and 350 mu W) make it a low-power imaging device.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Resolution of two-dimensional currents in superconductors from a two-dimensional magnetic field measurement by the method of regularization
    Feldmann, DM
    PHYSICAL REVIEW B, 2004, 69 (14): : 144515 - 1
  • [2] Two-Dimensional Optical Imaging of Artificial Magnetic Field in the Laboratory
    Li, X-N
    An, N.
    Li, X-J
    Feng, X-Q
    Bai, J-T
    ACTA PHYSICA POLONICA A, 2013, 123 (01) : 34 - 38
  • [3] Two-dimensional imaging of the spin-orbit effective magnetic field
    Meier, L.
    Salis, G.
    Gini, E.
    Shorubalko, I.
    Ensslin, K.
    PHYSICAL REVIEW B, 2008, 77 (03)
  • [4] Dark-state imaging for two-dimensional mapping of a magnetic field
    Asahi, H
    Motomura, K
    Harada, K
    Mitsunaga, M
    OPTICS LETTERS, 2003, 28 (13) : 1153 - 1155
  • [5] Imaging of two-dimensional current density distributions from their magnetic field
    Krukowski, G
    Gratkowski, S
    Sikora, R
    COMPUTER ENGINEERING IN APPLIED ELECTROMAGNETISM, 2005, : 71 - 76
  • [6] TWO-DIMENSIONAL MAGNETIC PARTICLE IMAGING
    Wawrzik, Thilo
    Ludwig, Frank
    Schilling, Meinhard
    MAGNETIC NANOPARTICLES: PARTICLE SCIENCE, IMAGING TECHNOLOGY, AND CLINICAL APPLICATIONS, 2010, : 100 - 105
  • [7] Two-dimensional oscillator in a magnetic field
    T. K. Rebane
    Journal of Experimental and Theoretical Physics, 2012, 114 : 220 - 225
  • [8] Two-dimensional oscillator in a magnetic field
    Rebane, T. K.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 114 (02) : 220 - 225
  • [9] Two-dimensional EPR imaging with the rapid scan and rotated magnetic field gradient
    Czechowski, T.
    Chlewicki, W.
    Baranowski, M.
    Jurga, K.
    Szczepanik, P.
    Szulc, P.
    Tadyszak, K.
    Kedzia, P.
    Szostak, M.
    Malinowski, P.
    Wosinski, S.
    Prukala, W.
    Jurga, J.
    JOURNAL OF MAGNETIC RESONANCE, 2014, 248 : 126 - 130
  • [10] Two-dimensional Fibonacci grating for far-field super-resolution imaging
    Kedi Wu
    Guo Ping Wang
    Scientific Reports, 6