On the basic representation of the double affine Hecke algebra at critical level

被引:0
|
作者
van Diejen, J. F. [1 ]
Emsiz, E. [2 ]
Zurrian, I. N. [3 ]
机构
[1] Univ Talca, Inst Matemat, Casilla 747, Talca, Chile
[2] Delft Univ Technol, Delft Inst Appl Math, POB 5031, NL-2600 GA Delft, Netherlands
[3] Univ Seville, Dept Matemat Aplicada 2, EPS C Virgen Africa 7, Seville 41011, Spain
关键词
Affine Hecke algebras; affine Lie algebras; root systems; representation theory;
D O I
10.1142/S0219498824500610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the basic representation of the double affine Hecke algebra at critical level q = 1 associated to an irreducible reduced affine root system R with a reduced gradient root system. For R of untwisted type such a representation was studied by Oblomkov [A. Oblomkov, Double affine Hecke algebras and Calogero-Moser spaces, Represent. Theory 8 (2004) 243-266] and further detailed by Gehles [K. E. Gehles, Properties of Cherednik algebras and graded Hecke algebras, PhD thesis, University of Glasgow (2006)] in the presence of minuscule weights.
引用
收藏
页数:8
相关论文
共 50 条