Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique

被引:2
|
作者
Lofinmakin, Oladotun Oluyomi [1 ]
Sada, Samuel Oro-oghene [2 ]
Emovon, Ikuobase [1 ]
Samuel, Olusegun David [1 ]
Oke, Sunday Ayoola [3 ]
机构
[1] Fed Univ Petr Resources, Dept Mech Engn, Effurun, Delta, Nigeria
[2] Delta State Univ, Dept Mech & Prod Engn, Abraka, Delta, Nigeria
[3] Univ Lagos, Dept Mech Engn, Lagos, Nigeria
关键词
Welding; Tensile strength; Hardness; Modeling; RESPONSE-SURFACE METHODOLOGY; OPTIMIZATION; SELECTION; MODELS;
D O I
10.1007/s00170-024-13079-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Welding is one of the major operations in many industries as it provides a durable means of joining metals and ensuring that diverse equipments are created to meet the growing needs of the manufacturing industries. To enhance the production of these diverse equipments, studies are continually been performed to identify improved means of obtaining reliable joints. This study applies the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique, in improving the predictability of the optimal weld characteristics for a mild steel welded joints, with focus on tensile strength and hardness as responses. From the study, the variation in tensile strength and hardness as a result of the process parameter effects is illustrated, and it reveals the optimal tensile strength, and hardness is obtained at the combined input parameters: 170 Amp, 20 V, 24 l/min, and 2.2 mm for the tensile strength and 220 Amp, 20 V, 20 l/min, and 2.4 mm for the hardness.
引用
收藏
页码:1203 / 1210
页数:8
相关论文
共 50 条
  • [1] Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Oladotun Oluyomi Lofinmakin
    Samuel Oro-oghene Sada
    Ikuobase Emovon
    Olusegun David Samuel
    Sunday Ayoola Oke
    The International Journal of Advanced Manufacturing Technology, 2024, 131 : 1203 - 1210
  • [2] Performance prediction of a hybrid microgeneration system using Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Yang, L.
    Entchev, E.
    APPLIED ENERGY, 2014, 134 : 197 - 203
  • [3] Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Valenzuela, Ira C.
    Baldovino, Renann G.
    Bandala, Argel A.
    Dadios, Elmer P.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2017, : 129 - 134
  • [4] Modeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
    Foorginejad, Abolfazl
    Azargoman, Majid
    Mollayi, Nader
    Taheri, Morteza
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 (01): : 160 - 170
  • [5] Optimal Attitude Control of a Quadrotor UAV Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Rezazadeh, Sina
    Ardestani, Maike Alinaghizadeh
    Sadeghi, Parichehr Shahidi
    2013 3RD INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2013, : 219 - 223
  • [6] An Adaptive Neuro-Fuzzy Inference System (ANFIS) Model for Prediction of Optimal Dose In Methadone Maintenance Therapy
    Rahim, Nur Raidah
    Nordin, Sharifalillah
    Dom, Rosma Mohd
    2019 IEEE 10TH CONTROL AND SYSTEM GRADUATE RESEARCH COLLOQUIUM (ICSGRC), 2019, : 195 - 200
  • [7] PREDICTION OF BIOMASS PELLET DENSITY USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM(ANFIS) METHOD
    Liu, Juan
    Yan, Zhuoyu
    Xu, Mingze
    Liu, Yudi
    Bai, Xuewei
    Xiu, Yonghai
    Wei, Desheng
    INMATEH-AGRICULTURAL ENGINEERING, 2023, 70 (02): : 181 - 190
  • [8] Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network
    Dewan, Mohammad W.
    Huggett, Daniel J.
    Liao, T. Warren
    Wahab, Muhammad A.
    Okeil, Ayman M.
    MATERIALS & DESIGN, 2016, 92 : 288 - 299
  • [9] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [10] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103