Grading of a Semigroup C*-Algebra by a Local Group

被引:0
|
作者
Grigoryan, S. A. [1 ]
Sharafutdinov, A. Sh. [1 ]
机构
[1] Kazan State Power Engn Univ, Kazan 420066, Russia
关键词
semigroup C*-algebra; local group; Fell bundle; partial representation;
D O I
10.3103/S1066369X23070022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper by a local group of the semigroup C*-algebra generated by the free product ofAbelian semigroups is considered. The simplest of these algebras is the Cuntz-Toeplitz algebra TOn .For such algebras, an abstract version of the Fourier series by the local group is constructed. A numberof properties of the "harmonics" of this series are given.
引用
收藏
页码:72 / 76
页数:5
相关论文
共 50 条
  • [1] Grading of a Semigroup C*-Algebra by a Local Group
    S. A. Grigoryan
    A. Sh. Sharafutdinov
    Russian Mathematics, 2023, 67 : 72 - 76
  • [2] A Semigroup C*-Algebra Related To the Infinite Dihedral Group
    Gumerov, R. N.
    Lipacheva, E. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (04) : 1332 - 1340
  • [3] The structure relationship between the reduced semigroup C*-algebra and the reduced group C*-algebra
    Jang, SY
    KORUS 2003: 7TH KOREA-RUSSIA INTERNATIONAL SYMPOSIUM ON SCIENCE AND TECHNOLOGY, VOL 3, PROCEEDINGS: NATURAL SCIENCE, 2003, : 215 - 219
  • [4] A SEMIGROUP COMPOSITION C*-ALGEBRA
    Quertermous, Katie S.
    JOURNAL OF OPERATOR THEORY, 2012, 67 (02) : 581 - 604
  • [5] Partial inverse semigroup C*-algebra
    Shourijeh, B. Tabatabaie
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06): : 1539 - 1548
  • [6] ON NUCLEARITY OF THE C*-ALGEBRA OF AN INVERSE SEMIGROUP
    Amini, Massoud
    Khoshkam, Mahmood
    PUBLICACIONS MATEMATIQUES, 2020, 64 (02) : 499 - 511
  • [7] On C*-algebra of a semigroup of partial isometries
    Ostrovskyi, Vasyl
    Popovych, Stanislav
    Turowska, Lyudmila
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (01) : 210 - 231
  • [8] C*-algebra generated by the paths semigroup
    Grigoryan S.
    Grigoryan T.
    Lipacheva E.
    Sitdikov A.
    Lobachevskii Journal of Mathematics, 2016, 37 (6) : 740 - 748
  • [10] On representation of the endomorphism semigroup of a finite group on its group algebra
    Yu. B. Mel'nikov
    Siberian Mathematical Journal, 1998, 39 : 953 - 958