Quantum Noise Secured Terahertz Communications

被引:4
|
作者
Zhang, Lu [1 ,2 ]
Deng, Qiuzhuo [1 ,2 ]
Zhang, Hongqi [1 ,2 ]
Yang, Zuomin [1 ,2 ]
Pang, Xiaodan [3 ,4 ]
Bobrovs, Vjaceslavs [5 ]
Popov, Sergei [3 ]
Wu, Yixin [6 ]
Yu, Xiongbin [6 ]
Ozolins, Oskars [3 ,4 ,5 ]
Yu, Xianbin [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Lab, Hangzhou 311121, Peoples R China
[3] KTH Royal Inst Technol, Appl Phys Dept, S-10691 Stockholm, Sweden
[4] RISE Res Inst Sweden, Networks Unit, S-16440 Kista, Sweden
[5] Riga Tech Univ, Inst Telecommun, LV-1048 Riga, Latvia
[6] Huawei Technol Co Ltd, Inst Strateg Res, Shenzhen 518055, Peoples R China
关键词
Optical mixing; Optical noise; Ciphers; High-speed optical techniques; Optical transmitters; Adaptive optics; Wireless communication; Communication system security; communication system signaling; optical communication; optical signal processing; quantum theory; terahertz radiation; PHYSICAL-LAYER SECURITY; STREAM CIPHER; NETWORKS; Y-00;
D O I
10.1109/JSTQE.2022.3218848
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The terahertz communications display an important role in high-speed wireless communications, the security threat from the eavesdroppers in the terahertz communications has been gaining attention recently. The true randomness in the physical layer can ensure one-time-pad encryption for secured terahertz communications, however, physical layer security schemes like the quantum key distribution methods suffer from device imperfections that limit the desirable signal rate and link distance. Herein, we present the quantum noise secured terahertz wireless communications with photonic terahertz signal generation schemes. With the high-order diffusion algorithms, the signal is masked by the quantum noise ciphers to the eavesdroppers and cannot be detected because the inevitable randomness by quantum noise measurement will cause physical measurement errors. In the experiment, we demonstrate 16 Gbits(-1) quantum noise secured terahertz wireless communications with the conventional optical communication realms and devices, operating at 300 GHz terahertz frequency. This quantum noise secured terahertz communication approach is a significant step toward high-security wireless communications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantum Noise Secured Terahertz Communications
    Deng, Qiuzhuo
    Zhang, Lu
    Zhang, Hongqi
    Yang, Zuomin
    Pang, Xiaodan
    Bobrovs, Vjaceslavs
    Popov, Sergei
    Wu, Yixin
    Yu, Xiongbin
    Ozolins, Oskars
    Yu, Xianbin
    2023 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2023,
  • [2] Ensuring quantum-secured communications
    Chunnilall, Christopher
    Spiller, Tim
    LASER FOCUS WORLD, 2019, 55 (01): : 81 - 84
  • [3] Phase Noise Robust Terahertz Communications
    Forsch, Christian
    Alrabadi, Osama
    Brueck, Stefan
    Gerstacker, Wolfgang
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [4] Effect of noise in quantum communications
    Kartalopoulos, Stamatios V.
    NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [5] Quantum Key Secured Communications Field Trial for Industry 4.0
    Woodward, R., I
    Dynes, J. F.
    Wright, P.
    White, C.
    Parker, R. C.
    Wonfor, A.
    Yuan, Z. L.
    Lord, A.
    Shields, A. J.
    2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [6] Secured wireless communications
    Jamalipour, Abbas
    IEEE WIRELESS COMMUNICATIONS, 2007, 14 (05) : 2 - 3
  • [7] QUANTUM EFFECTS AND NOISE IN OPTICAL COMMUNICATIONS
    ROSS, M
    PROCEEDINGS OF THE IEEE, 1963, 51 (04) : 602 - &
  • [8] Quantum noise limits to terabaud communications
    Corney, JF
    Drummond, PD
    Liebman, A
    OPTICS COMMUNICATIONS, 1997, 140 (4-6) : 211 - 215
  • [9] Signal and Quantum Noise in Optical Communications and Cryptography
    Gallion, Philippe
    Mendieta, Francisco
    Jiang, Shifeng
    PROGRESS IN OPTICS, VOL 52, 2009, 52 : 149 - 259
  • [10] Quantum noise in a terahertz hot electron bolometer mixer
    Zhang, W.
    Khosropanah, P.
    Gao, J. R.
    Kollberg, E. L.
    Yngvesson, K. S.
    Bansal, T.
    Barends, R.
    Klapwijk, T. M.
    APPLIED PHYSICS LETTERS, 2010, 96 (11)