High-order methods beyond the classical complexity bounds: inexact high-order proximal-point methods

被引:1
|
作者
Ahookhosh, Masoud [1 ]
Nesterov, Yurii [2 ,3 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Catholic Univ Louvain UCL, Ctr Operat Res & Econometr CORE, 34voie Roman Pays, B-1348 Louvain La Neuve, Belgium
[3] Catholic Univ Louvain UCL, Dept Math Engn INMA, 34voie Roman Pays, B-1348 Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Convex composite optimization; High-order proximal-point operator; Bi-level optimization framework; Lower complexity bounds; Optimal methods; Superfast methods; LIPSCHITZ GRADIENT CONTINUITY; 1ST-ORDER METHODS; CONVEX-OPTIMIZATION;
D O I
10.1007/s10107-023-02041-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce a Bi-level OPTimization (BiOPT) framework for minimizing the sum of two convex functions, where one of them is smooth enough. The BiOPT framework offers three levels of freedom: (i) choosing the order p of the proximal term; (ii) designing an inexact pth-order proximal-point method in the upper level; (iii) solving the auxiliary problem with a lower-level non-Euclidean method in the lower level. We here regularize the objective by a (p+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p+1)$$\end{document}th-order proximal term (for arbitrary integer p >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 1$$\end{document}) and then develop the generic inexact high-order proximal-point scheme and its acceleration using the standard estimating sequence technique at the upper level. This follows at the lower level with solving the corresponding pth-order proximal auxiliary problem inexactly either by one iteration of the pth-order tensor method or by a lower-order non-Euclidean composite gradient scheme. Ultimately, it is shown that applying the accelerated inexact pth-order proximal-point method at the upper level and handling the auxiliary problem by the non-Euclidean composite gradient scheme lead to a 2q-order method with the convergence rate O(k-(p+1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(k<^>{-(p+1)})$$\end{document} (for q=Lp/2 RIGHT FLOOR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=\lfloor p/2\rfloor $$\end{document} and the iteration counter k), which can result to a superfast method for some specific class of problems.
引用
收藏
页码:365 / 407
页数:43
相关论文
共 50 条
  • [1] Inexact accelerated high-order proximal-point methods
    Yurii Nesterov
    Mathematical Programming, 2023, 197 : 1 - 26
  • [2] Inexact accelerated high-order proximal-point methods
    Nesterov, Yurii
    MATHEMATICAL PROGRAMMING, 2023, 197 (01) : 1 - 26
  • [3] INEXACT HIGH-ORDER PROXIMAL-POINT METHODS WITH AUXILIARY SEARCH PROCEDURE
    Nesterov, Yurii
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2807 - 2828
  • [4] High-Order Adaptive Galerkin Methods
    Canuto, Claudio
    Nochetto, Ricardo H.
    Stevenson, Rob
    Verani, Marco
    SPECTRAL AND HIGH ORDER METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS ICOSAHOM 2014, 2015, 106 : 51 - 72
  • [5] Families of high-order composition methods
    McLachlan, RI
    NUMERICAL ALGORITHMS, 2002, 31 (1-4) : 233 - 246
  • [6] The complexity of high-order interior-point methods for solving sufficient complementarity problems
    Stoer, J
    Wechs, M
    APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, 2001, : 329 - 342
  • [7] A study on the high-order Smolarkiewicz methods
    Kuo, HC
    Leou, TM
    Williams, RT
    COMPUTERS & FLUIDS, 1999, 28 (06) : 779 - 799
  • [8] SPECTRAL METHODS FOR HIGH-ORDER EQUATIONS
    MERCADER, I
    NET, M
    FALQUES, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 91 (1-3) : 1245 - 1251
  • [9] HIGH-ORDER NONLINEAR GALERKIN METHODS
    何银年
    李开泰
    Numerical Mathematics A Journal of Chinese Universities(English Series), 1993, (02) : 210 - 214
  • [10] High-order W-methods
    Mathematics Department, University of Wyoming, Laramie, WY 82071, United States
    不详
    J. Comput. Appl. Math., 1600, 8 (1798-1811):