AFA-Recur: an ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation

被引:31
|
作者
Saglietto, Andrea [1 ]
Gaita, Fiorenzo [2 ]
Blomstrom-Lundqvist, Carina [3 ]
Arbelo, Elena [4 ,5 ,6 ]
Dagres, Nikolaos [7 ]
Brugada, Josep [8 ]
Maggioni, Aldo Pietro [9 ,10 ]
Tavazzi, Luigi [11 ]
Kautzner, Josef [12 ]
De Ferrari, Gaetano Maria [1 ]
Anselmino, Matteo [1 ]
机构
[1] Univ Turin, Citta Salute & Sci Torino Hosp, Dept Med Sci, Div Cardiol, Turin, Italy
[2] J Med, Cardiol Unit, Turin, Italy
[3] Uppsala Univ, Dept Med Sci & Cardiol, Uppsala, Sweden
[4] Univ Barcelona, Hosp Clin Barcelona, Cardiovasc Inst, Dept Cardiol, Barcelona, Spain
[5] Inst Invest August Pi I Sunyer IDIBAPS, Barcelona, Spain
[6] Ctr Invest Biomed Red Enfermedades Cardiovasc CIB, Madrid, Spain
[7] Univ Leipzig, Dept Electrophysiol, Heart Ctr Leipzig, Leipzig, Germany
[8] Hosp St Joan de Deu Univ Barcelona, Cardiovasc Inst, Hosp Clin Pediat Arrhythmia Unit, Barcelona, Spain
[9] European Soc Cardiol, EURObservat Res Programme EORP, Sophia Antipolis, France
[10] ANMCO Res Ctr, Florence, Italy
[11] GVM Care & Res, Maria Cecilia Hosp, Cardiovasc Dept, Cotignola, Italy
[12] Inst Clin & Expt Med IKEM, Dept Cardiol, Prague, Czech Republic
来源
EUROPACE | 2023年 / 25卷 / 01期
关键词
Atrial fibrillation; Transcatheter ablation; Recurrence; Predictors; Machine learning; CATHETER ABLATION; MANAGEMENT; GUIDELINES; RHYTHM;
D O I
10.1093/europace/euac145
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Atrial fibrillation (AF) recurrence during the first year after catheter ablation remains common. Patient-specific prediction of arrhythmic recurrence would improve patient selection, and, potentially, avoid futile interventions. Available prediction algorithms, however, achieve unsatisfactory performance. Aim of the present study was to derive from ESC-EHRA Atrial Fibrillation Ablation Long-Term Registry (AFA-LT) a machine-learning scoring system based on pre-procedural, easily accessible clinical variables to predict the probability of 1-year arrhythmic recurrence after catheter ablation. Methods and results Patients were randomly split into a training (80%) and a testing cohort (20%). Four different supervised machine-learning models (decision tree, random forest, AdaBoost, and k-nearest neighbour) were developed on the training cohort and hyperparameters were tuned using 10-fold cross validation. The model with the best discriminative performance on the testing cohort (area under the curve-AUC) was selected and underwent further optimization, including re-calibration. A total of 3128 patients were included. The random forest model showed the best performance on the testing cohort; a 19-variable version achieved good discriminative performance [AUC 0.721, 95% confidence interval (CI) 0.680-0.764], outperforming existing scores (e.g. APPLE score: AUC 0.557, 95% CI 0.506-0.607). Platt scaling was used to calibrate the model. The final calibrated model was implemented in a web calculator, freely available at http://afarec.hpc4ai.unito.ti/. Conclusion AFA-Recur, a machine-learning-based probability score predicting 1-year risk of recurrent atrial arrhythmia after AF ablation, achieved good predictive performance, significantly better than currently available tools. The calculator, freely available online, allows patient-specific predictions, favouring tailored therapeutic approaches for the individual patient. [GRAPHICS] .
引用
收藏
页码:92 / 100
页数:9
相关论文
共 6 条
  • [1] Atrial fibrillation ablation in heart failure: Findings from the ESC-EHRA EORP Atrial Fibrillation Ablation long-term (AFA LT) registry
    Temporelli, Pier Luigi
    Arbelo, Elena
    Laroche, Cecile
    Blomstrom-Lundqvist, Carina
    Kirchhof, Paulus
    Lip, Gregory Y. H.
    Boriani, Giuseppe
    Nakou, Eleni
    Maggioni, Aldo P.
    Tavazzi, Luigi
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 346 : 19 - 26
  • [2] Impact of centre volume on atrial fibrillation ablation outcomes in Europe: a report from the ESC EHRA EORP Atrial Fibrillation Ablation Long-Term (AFA LT) Registry
    Vassilikos, Vassilios P.
    Pagourelias, Efstathios D.
    Laroche, Cecile
    Blomstrom-Lundqvist, Carina
    Kautzner, Josef
    Maggioni, Aldo P.
    Tavazzi, Luigi
    Dagres, Nikolaos
    Brugada, Josep
    Stuehlinger, Markus
    Arbelo, Elena
    EUROPACE, 2021, 23 (01): : 49 - 58
  • [3] Atrial fibrillation ablation long-term ESC-EHRA EORP AFA LT registry: in-hospital and 1-year follow-up findings in Italy
    Anselmino, Matteo
    Ballatore, Andrea
    Saglietto, Andrea
    Stabile, Giuseppe
    De Ponti, Roberto
    Grimaldi, Massimo
    Agricola, Pietro M. G.
    Della Bella, Paolo
    Tritto, Massimo
    Pappone, Carlo
    Calo, Leonardo
    Bongiorni, Maria G.
    Blomstrom-Lundqvist, Carina
    Gaita, Fiorenzo
    De Ferrari, Gaetano M.
    JOURNAL OF CARDIOVASCULAR MEDICINE, 2020, 21 (10) : 740 - 748
  • [4] Impact of procedural volume on complication and recurrence rate after atrial fibrillation ablation in European centers. An ESC EORP Registry: Atrial Fibrillation Long-Term
    Pagourelias, E.
    Vassilikos, V.
    Blomstrom-Lundqvist, C.
    Kautzner, J.
    Maggioni, A. P.
    Tavazzi, L.
    Dagres, N.
    Brugada, J.
    Arbelo, E.
    EUROPEAN HEART JOURNAL, 2020, 41 : 599 - 599
  • [5] Machine learning model for predicting late recurrence of atrial fibrillation after catheter ablation
    Budzianowski, Jan
    Kaczmarek-Majer, Katarzyna
    Rzezniczak, Janusz
    Slomczynski, Marek
    Wichrowski, Filip
    Hiczkiewicz, Dariusz
    Musielak, Bogdan
    Grydz, Lukasz
    Hiczkiewicz, Jaroslaw
    Burchardt, Pawel
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Machine learning model for predicting late recurrence of atrial fibrillation after catheter ablation
    Jan Budzianowski
    Katarzyna Kaczmarek-Majer
    Janusz Rzeźniczak
    Marek Słomczyński
    Filip Wichrowski
    Dariusz Hiczkiewicz
    Bogdan Musielak
    Łukasz Grydz
    Jarosław Hiczkiewicz
    Paweł Burchardt
    Scientific Reports, 13