Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome

被引:11
|
作者
Petrillo, Antonella [2 ]
Fusco, Roberta [1 ]
Barretta, Maria Luisa [2 ]
Granata, Vincenza [2 ]
Mattace Raso, Mauro [2 ]
Porto, Annamaria [2 ]
Sorgente, Eugenio [2 ]
Fanizzi, Annarita [3 ]
Massafra, Raffaella [4 ]
Lafranceschina, Miria [5 ]
La Forgia, Daniele [5 ]
Trombadori, Charlotte Marguerite Lucille [6 ]
Belli, Paolo [6 ]
Trecate, Giovanna [7 ]
Tenconi, Chiara [8 ]
De Santis, Maria Carmen [9 ]
Greco, Laura [10 ]
Ferranti, Francesca Romana [10 ]
De Soccio, Valeria [10 ]
Vidiri, Antonello [10 ]
Botta, Francesca [11 ]
Dominelli, Valeria [11 ]
Cassano, Enrico [11 ]
Boldrini, Luca [6 ]
机构
[1] Igea SpA, Med Oncol Div, I-80013 Naples, Italy
[2] Ist Nazl Tumori IRCCS Fdn G Pascale, Radiol Div, I-80131 Naples, Italy
[3] Ist Tumori Giovanni Paolo II, Direz Sci IRCCS, Via Orazio Flacco 65, I-70124 Bari, Italy
[4] IRCCS Ist Tumori Giovanni Paolo II, SSD Fis Sanit, Via Orazio Flacco 65, I-70124 Bari, Italy
[5] IRCCS Ist Tumori Giovanni Paolo II, Struttura Semplice Dipartimentale Radiodiagnost Se, Via Orazio Flacco 65, I-70124 Bari, Italy
[6] Fdn Policlin Univ A Gemelli IRCCS, Dipartimento Diagnost Immagini Radioterapia Oncol, I-00168 Rome, Italy
[7] Fdn IRCCS Ist Nazl Tumori, Dept Radiodiagnost & Magnet Resonance, I-20133 Milan, Italy
[8] Fdn IRCCS Ist Nazl Tumori, Dept Med Phys, I-20133 Milan, Italy
[9] Fdn IRCCS Ist Nazl Tumori, De Santis Radiat Oncol, I-20133 Milan, Italy
[10] Regina Elena Inst Canc Res, Ist Ricovero & Cura Carattere Sci IRCCS, Radiol & Diagnost Imaging, Rome, Italy
[11] IEO Ist Europeo Oncol, Breast Imaging Div, I-20141 Milan, Italy
来源
RADIOLOGIA MEDICA | 2023年 / 128卷 / 11期
关键词
Radiomics; Artificial intelligence; Magnetic resonance imaging; Breast cancer; DCE-MRI; STANDARDIZED INDEX; CLASSIFICATION; DIAGNOSIS; CHEMORADIOTHERAPY; ASSOCIATIONS; ULTRASOUND; RESPONDERS; PARAMETERS; ACCURACY;
D O I
10.1007/s11547-023-01718-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectiveThe objective of the study was to evaluate the accuracy of radiomics features obtained by MR images to predict Breast Cancer Histological Outcome.MethodsA total of 217 patients with malignant lesions were analysed underwent MRI examinations. Considering histological findings as the ground truth, four different types of findings were used in both univariate and multivariate analyses: (1) G1 + G2 vs G3 classification; (2) presence of human epidermal growth factor receptor 2 (HER2 + vs HER2 -); (3) presence of the hormone receptor (HR + vs HR -); and (4) presence of luminal subtypes of breast cancer.ResultsThe best accuracy for discriminating HER2 + versus HER2 - breast cancers was obtained considering nine predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 88% on validation set). The best accuracy for discriminating HR + versus HR - breast cancers was obtained considering nine predictors by T2-weighted subtraction images and a decision tree (accuracy of 90% on validation set). The best accuracy for discriminating G1 + G2 versus G3 breast cancers was obtained considering 16 predictors by early phase T1-weighted subtraction images in a linear regression model with an accuracy of 75%. The best accuracy for discriminating luminal versus non-luminal breast cancers was obtained considering 27 predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 94% on validation set).ConclusionsThe combination of radiomics analysis and artificial intelligence techniques could be used to support physician decision-making in prediction of Breast Cancer Histological Outcome.
引用
收藏
页码:1347 / 1371
页数:25
相关论文
共 50 条
  • [1] Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome
    Antonella Petrillo
    Roberta Fusco
    Maria Luisa Barretta
    Vincenza Granata
    Mauro Mattace Raso
    Annamaria Porto
    Eugenio Sorgente
    Annarita Fanizzi
    Raffaella Massafra
    Miria Lafranceschina
    Daniele La Forgia
    Charlotte Marguerite Lucille Trombadori
    Paolo Belli
    Giovanna Trecate
    Chiara Tenconi
    Maria Carmen De Santis
    Laura Greco
    Francesca Romana Ferranti
    Valeria De Soccio
    Antonello Vidiri
    Francesca Botta
    Valeria Dominelli
    Enrico Cassano
    Luca Boldrini
    La radiologia medica, 2023, 128 : 1347 - 1371
  • [2] Radiomics of Multi-Parametric Breast MRI in Breast Cancer Diagnosis: A Quantitative Investigation of Diffusion Weighted Imaging, Dynamic Contrast-Enhanced, and T2-Weighted Magnetic Resonance Imaging
    Maforo, N.
    Li, H.
    Weiss, W.
    Lan, L.
    Giger, M.
    MEDICAL PHYSICS, 2015, 42 (06) : 3213 - 3213
  • [3] Differentiation of breast tuberculosis and breast cancer using diffusion-weighted, T2-weighted and dynamic contrast-enhanced magnetic resonance imaging
    Ramaema, Dibuseng P.
    Hift, Richard J.
    SA JOURNAL OF RADIOLOGY, 2018, 22 (02):
  • [4] Prediction of Breast Cancer Histological Outcome by Radiomics and Artificial Intelligence Analysis in Contrast-Enhanced Mammography
    Petrillo, Antonella
    Fusco, Roberta
    Di Bernardo, Elio
    Petrosino, Teresa
    Barretta, Maria Luisa
    Porto, Annamaria
    Granata, Vincenza
    Di Bonito, Maurizio
    Fanizzi, Annarita
    Massafra, Raffaella
    Petruzzellis, Nicole
    Arezzo, Francesca
    Boldrini, Luca
    La Forgia, Daniele
    CANCERS, 2022, 14 (09)
  • [5] FOCAL SALVAGE GUIDED BY T2-WEIGHTED AND DYNAMIC CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGING FOR PROSTATE CANCER RECURRENCES
    Moman, Maaike R.
    van den Berg, Cornelis A. T.
    Kruger, Arto E. Boeken
    Battermann, Jan J.
    Moerland, Marinus A.
    van der Heide, Uulke A.
    van Vulpen, Marco
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 76 (03): : 741 - 746
  • [6] Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging
    Delongchamps, Nicolas Barry
    Rouanne, Mathieu
    Flam, Thierry
    Beuvon, Frederic
    Liberatore, Mathieu
    Zerbib, Marc
    Cornud, Francois
    BJU INTERNATIONAL, 2011, 107 (09) : 1411 - 1418
  • [7] Comparison of dynamic contrast-enhanced magnetic resonance imaging with T2-weighted imaging for preoperative staging of early endometrial carcinoma
    Zheng, Linfeng
    Zheng, Sujuan
    Yuan, Xiaochun
    Wang, Xifu
    Zhang, Zhuoli
    Zhang, Guixiang
    ONCOTARGETS AND THERAPY, 2015, 8 : 1743 - 1751
  • [8] Radiomics analysis in differentiating osteosarcoma and chondrosarcoma based on T2-weighted imaging and contrast-enhanced T1-weighted imaging
    Gao, Zhi
    Dai, Zhongshang
    Ouyang, Zhengxiao
    Li, Dianqing
    Tang, Sihuai
    Li, Penglin
    Liu, Xudong
    Jiang, Yongfang
    Song, Deye
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [9] Integration of dynamic contrast-enhanced magnetic resonance imaging and T2-weighted imaging radiomic features by a canonical correlation analysis-based feature fusion method to predict histological grade in ductal breast carcinoma
    Fan, Ming
    Liu, Zuhui
    Xie, Sudan
    Xu, Maosheng
    Wang, Shiwei
    Gao, Xin
    Li, Lihua
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (21):
  • [10] Dynamic contrast-enhanced imaging of the breast with magnetic resonance
    Cron, GO
    Santyr, G
    Kelcz, F
    IMTC/97 - IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE: SENSING, PROCESSING, NETWORKING, PROCEEDINGS VOLS 1 AND 2, 1997, : 1354 - 1356