Prediction Intervals in ARCH Models Using Sieve Bootstrap Robust Against Outliers
被引:0
|
作者:
Barman, Samir
论文数: 0引用数: 0
h-index: 0
机构:
ICAR Indian Agr Stat Res Inst, New Delhi, IndiaICAR Indian Agr Stat Res Inst, New Delhi, India
Barman, Samir
[1
]
Ramasubramanian, V.
论文数: 0引用数: 0
h-index: 0
机构:
ICAR Indian Agr Stat Res Inst, New Delhi, IndiaICAR Indian Agr Stat Res Inst, New Delhi, India
Ramasubramanian, V.
[1
]
Ray, Mrinmoy
论文数: 0引用数: 0
h-index: 0
机构:
ICAR Indian Agr Stat Res Inst, New Delhi, IndiaICAR Indian Agr Stat Res Inst, New Delhi, India
Ray, Mrinmoy
[1
]
Paul, Ranjit Kumar
论文数: 0引用数: 0
h-index: 0
机构:
ICAR Indian Agr Stat Res Inst, New Delhi, IndiaICAR Indian Agr Stat Res Inst, New Delhi, India
Paul, Ranjit Kumar
[1
]
机构:
[1] ICAR Indian Agr Stat Res Inst, New Delhi, India
来源:
STATISTICS AND APPLICATIONS
|
2023年
/
21卷
/
02期
关键词:
Coverage probability;
Innovative outlier;
Length of prediction interval;
Return;
Volatility;
Weighted least squares;
WEIGHTED LINEAR ESTIMATOR;
TIME-SERIES;
FORECAST INTERVALS;
VOLATILITY;
VARIANCE;
RETURNS;
D O I:
暂无
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
One of the primary goals of time series (TS) modeling is to forecast future observations. Although point forecasts are the most common type of prediction, interval forecasts are more informative and are typically obtained as prediction intervals (PIs). For non-linear TS data, the ARCH model is one of the widely used models. The Sieve Bootstrap method is a popular method for constructing PIs in TS models. The TS data are not always free from outliers, whose presence may result in an increase in the length of PIs obtained also with poor coverage. In this study, two new robust Sieve Bootstrap approaches based on weighted least squares estimation have been proposed to deal with the presence of outliers for developing PIs for both returns and volatilities in the ARCH model setup. The performances of the proposed methods viz., Robust Unconditional Sieve Bootstrap (RUSB) and Robust Sieve Bootstrap (RSB) for constructing PIs using both simulated as well as real data sets have been found to be better when compared with their existing counterparts.
机构:
Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, PolandWroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, Poland
Rozanski, Roman
Chlapinski, Grzegorz
论文数: 0引用数: 0
h-index: 0
机构:
KRUK SA, Wroclaw, PolandWroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, Poland
Chlapinski, Grzegorz
Hlawka, Marcin
论文数: 0引用数: 0
h-index: 0
机构:
Biuro Informacji Gospodarczej SA, Krajowy Rejestr Dlugow, Krakow, PolandWroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, Poland
Hlawka, Marcin
Jamroz, Krzysztof
论文数: 0引用数: 0
h-index: 0
机构:
Santander Bank Polska SA, Warsaw, PolandWroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, Poland
Jamroz, Krzysztof
Kawecki, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
IT Consulting Maciej Kawecki, Krakow, PolandWroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, Poland
Kawecki, Maciej
Zagdanski, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, PolandWroclaw Univ Sci & Technol, Fac Pure & Appl Math, 27 Wybrzeze Wyspianskiego, PL-50370 Wroclaw, Poland
Zagdanski, Adam
PROBABILITY AND MATHEMATICAL STATISTICS-POLAND,
2018,
38
(02):
: 317
-
357