In situ laser generation of NiOX nanoparticles embedded in graphene flakes for ambient-processed hole-transport-layer-free perovskite solar cells

被引:4
|
作者
Wang, Dong [1 ]
Chen, Qian [1 ]
Mo, Hongbo [2 ]
Cheng, Dongxu [2 ]
Liu, Xuzhao [1 ,3 ]
Liu, Wen [1 ]
Jacobs, Janet [3 ,4 ]
Thomas, Andrew G. [1 ,3 ]
Liu, Zhu [1 ,5 ]
Curry, Richard J. [3 ,4 ]
机构
[1] Univ Manchester, Dept Mat, Oxford Rd, Manchester M13 9PL, England
[2] Univ Manchester, Dept Mech Aerosp & Civil Engn, Oxford Rd, Manchester M13 9PL, England
[3] Univ Manchester, Photon Sci Inst, Dept Elect & Elect Engn, Oxford Rd, Manchester M13 9PL, England
[4] Univ Manchester, Henry Royce Inst, Oxford Rd, Manchester M13 9PL, England
[5] Chinese Acad Sci, Ningbo Inst Mat Engn & Technol, Res Ctr Laser Extreme Mfg, Ningbo, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Laser-induced graphene; Graphene electrode; Nickel oxide; Nanoparticles; Hole-transport-layer-free perovskite solar cells; CONDUCTOR-FREE; CARBON ELECTRODE; WORK FUNCTION; PERFORMANCE; METAL; NANOTUBE; GOLD;
D O I
10.1016/j.carbon.2023.118360
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-based hole-transport-layer-free perovskite solar cells (HTL-free C-PSCs) have gained tremendous attention due to their low cost, ease of fabrication, low-temperature processability, and excellent long-term stability. However, HTL-free C-PSCs suffer from poor interfacial contact at the carbon/perovskite and limited hole extraction ability, thereby limiting the device's performance. Herein, an in situ one-step synthesis strategy is presented to simultaneously generate laser-induced graphene flakes (LIG) embedded with the uniformly distributed fine NiOX nanoparticles (LIG@NiOX) as the electrode for HTL-free C-PSCs. Due to the desired morphology of the LIG flakes, it enables the formation of a compact LIG@NiOX electrode without a post-heat treatment or hot-pressing process. As a result, the fully ambient-processed HTL-free C-PSCs prepared under a high relative humidity of around 50-70% based on the LIG@NiOX achieve a power conversion efficiency (PCE) of up to 14.46%, compared to a PCE of 10.36% for the PSCs based on the commercial graphite/carbon black. This is due to a remarkable improvement in the physical contact at the carbon/perovskite interface using LIG@NiOX. Moreover, the PSCs based on LIG@NiOX retained 94% of their initial PCEs after 185 days of storage in ambient air, compared to those based on the Spiro-OMeTAD/Au that only retained 78% of their initial PCEs after 84 days of storage under the same ambient condition. The laser process opens a new avenue for simultaneous forming LIG embedded with the in situ formed metal oxide nanoparticles for various applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Highly efficient inverted hole-transport-layer-free perovskite solar cells
    Zhou, Zhongmin
    Pang, Shuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) : 503 - 512
  • [2] Perovskite solar cells with NiOx hole-transport layer
    Li, Mengjia
    Zhang, Zuolin
    Sun, Jie
    Liu, Fan
    Chen, Jiangzhao
    Ding, Liming
    Chen, Cong
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (10)
  • [3] Ambient-processed transition metal oxide free-Perovskite solar cells enabled by a new organic charge transport layer
    Han, Ggoch Ddeul
    Chang, Sehoon
    Gradecak, Silvija
    Swager, Timothy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [4] Photoconductive NiOx hole transport layer for efficient perovskite solar cells
    Zhao, Xiaoyan
    Zhang, Wenxiao
    Feng, Xiuxiu
    Guo, Xuemin
    Lu, Chunyan
    Li, Xiaodong
    Fang, Junfeng
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [5] Elevated efficiency and stability of hole-transport-layer-free perovskite solar cells induced by phenethylammonium iodide
    Wei, Qingbo
    Ye, Zhangwen
    Gao, Yixuan
    Wang, Nannan
    Feng, Lina
    Zhao, Qingxia
    Hou, Xiufang
    Zan, Lingxing
    Fu, Feng
    Yang, Dong
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (03) : 1573 - 1581
  • [6] Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells
    Wu, Wu-Qiang
    Wang, Qi
    Fang, Yanjun
    Shao, Yuchuan
    Tang, Shi
    Deng, Yehao
    Lu, Haidong
    Liu, Ye
    Li, Tao
    Yang, Zhibin
    Gruverman, Alexei
    Huang, Jinsong
    NATURE COMMUNICATIONS, 2018, 9
  • [7] Efficient inverted perovskite solar cells with a low-temperature processed NiOx/SAM hole transport layer
    Guo, Yi
    Huang, Like
    Wang, Chaofeng
    Huang, Jiajia
    Liu, Shuang
    Liu, Xiaohui
    Zhang, Jing
    Hu, Ziyang
    Zhu, Yuejin
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (04) : 1507 - 1515
  • [8] Elevated Efficiency and Stability of Hole-Transport-Layer-Free Perovskite Solar Cells Triggered by Surface Engineering
    Wei, Qingbo
    Wang, Nannan
    Gao, Yixuan
    Zhuansun, Yingjia
    Wang, Jiating
    Zhu, Decai
    Zan, Lingxing
    Fu, Feng
    Liu, Yucheng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) : 20803 - 20812
  • [9] Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells
    Wu-Qiang Wu
    Qi Wang
    Yanjun Fang
    Yuchuan Shao
    Shi Tang
    Yehao Deng
    Haidong Lu
    Ye Liu
    Tao Li
    Zhibin Yang
    Alexei Gruverman
    Jinsong Huang
    Nature Communications, 9
  • [10] Metal organic framework derived NiOx nanoparticles for application as a hole transport layer in perovskite solar cells
    Islam, Md. Ariful
    Selvanathan, Vidhya
    Chelvanathan, Puvaneswaran
    Mottakin, M.
    Aminuzzaman, Mohammod
    Ibrahim, Mohd Adib
    Muhammad, Ghulam
    Akhtaruzzaman, Md.
    RSC ADVANCES, 2023, 13 (19) : 12781 - 12791