A Deep Learning-Based Intelligent Quality Detection Model for Machine Translation

被引:4
|
作者
Chen, Meijuan [1 ]
机构
[1] Wuchang Shouyi Univ, Coll Foreign Languages, Wuhan 430064, Hubei, Peoples R China
关键词
Machine translation; Speech recognition; Feature extraction; Linguistics; Web and internet services; Quality assessment; Manuals; Deep learning; Complex systems; Scene classification; Quality detection; deep learning; machine translation; complex scenes; LANGUAGE; RESOURCE;
D O I
10.1109/ACCESS.2023.3305397
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With more and more active international connections, the complex scenes-aware machine translation has been a novel concern in the area of natural language processing. Although various machine translation methods have been proposed during the past few years, automatic and intelligent quality detection for translation results failed to receive sufficient attention. Actually, the real-time quality evaluation for machine translation results remains important, because it can facilitate constant debugging and optimization of machine translation products. Existing approaches mostly focused on the offline written contents rather than real-time extensive oral contents. To bridge current gap, a sentence-level machine translation quality estimation method is deployed in this paper. In particular, a specifical recurrent neural network with double directions (Double-RNN) is proposed as the backbone network structure. The feature extraction process utilizes the Double-RNN translation model, which makes full use of a large amount of parallel corpus. The evaluations show that Double-RNN method proposed in this paper is the closest to the standard quality assessment, and thus can also evaluate the quality of Chinese and English translations more fairly.
引用
收藏
页码:89469 / 89477
页数:9
相关论文
共 50 条
  • [1] Model optimization of English intelligent translation based on outlier detection and machine learning
    Bian, Yuzhu
    Li, Jiaxin
    Zhao, Yuge
    SOFT COMPUTING, 2023, 27 (14) : 10297 - 10303
  • [2] An intelligent machine learning-based sarcasm detection and classification model on social networks
    Vinoth, D.
    Prabhavathy, P.
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (08): : 10575 - 10594
  • [3] An intelligent machine learning-based sarcasm detection and classification model on social networks
    D. Vinoth
    P. Prabhavathy
    The Journal of Supercomputing, 2022, 78 : 10575 - 10594
  • [4] Deep learning-based intelligent detection of pavement distress
    Zheng, Lele
    Xiao, Jingjing
    Wang, Yinghui
    Wu, Wangjie
    Chen, Zhirong
    Yuan, Dongdong
    Jiang, Wei
    AUTOMATION IN CONSTRUCTION, 2024, 168
  • [5] Correction to: An intelligent machine learning-based sarcasm detection and classification model on social networks
    D. Vinoth
    P. Prabhavathy
    The Journal of Supercomputing, 2023, 79 : 10506 - 10506
  • [6] Deep Learning-Based Hybrid Intelligent Intrusion Detection System
    Khan, Muhammad Ashfaq
    Kim, Yangwoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 671 - 687
  • [7] DEEP MACHINE LEARNING-BASED ANALYSIS FOR INTELLIGENT PHONETIC LANGUAGE RECOGNITION
    Liu, Yumei
    Luo, Qiang
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (03): : 1557 - 1563
  • [8] DEEP MACHINE LEARNING-BASED ANALYSIS FOR INTELLIGENT PHONETIC LANGUAGE RECOGNITION
    Liu Y.
    Luo Q.
    Scalable Computing, 2024, 25 (03): : 1557 - 1563
  • [9] English Translation Model Based on Intelligent Recognition and Deep Learning
    Yu, JinLin
    Ma, Xiuli
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [10] Improving detection of asphalt distresses with deep learning-based diffusion model for intelligent road maintenance
    Cano-Ortiz, Sail
    Iglesias, Lara Lloret
    Ruiz del Arbol, Pablo Martinez
    Castro-Fresno, Daniel
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 17