Deep learning-based blind image super-resolution with iterative kernel reconstruction and noise estimation

被引:15
|
作者
Ates, Hasan F. [1 ]
Yildirim, Suleyman [2 ]
Gunturk, Bahadir K. [3 ]
机构
[1] Ozyegin Univ, Fac Engn, Istanbul, Turkiye
[2] Koc Univ, Coll Engn, Istanbul, Turkiye
[3] Istanbul Medipol Univ, Sch Engn & Nat Sci, Istanbul, Turkiye
关键词
Super-resolution; Blind; Iterative; Deep network; NETWORKS;
D O I
10.1016/j.cviu.2023.103718
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Blind single image super-resolution (SISR) is a challenging task in image processing due to the ill-posed nature of the inverse problem. Complex degradations present in real life images make it difficult to solve this problem using naive deep learning approaches, where models are often trained on synthetically generated image pairs. Most of the effort so far has been focused on solving the inverse problem under some constraints, such as for a limited space of blur kernels and/or assuming noise-free input images. Yet, there is a gap in the literature to provide a well-generalized deep learning-based solution that performs well on images with unknown and highly complex degradations. In this paper, we propose IKR-Net (Iterative Kernel Reconstruction Network) for blind SISR. In the proposed approach, kernel and noise estimation and high-resolution image reconstruction are carried out iteratively using dedicated deep models. The iterative refinement provides significant improvement in both the reconstructed image and the estimated blur kernel even for noisy inputs. IKR-Net provides a generalized solution that can handle any type of blur and level of noise in the input low-resolution image. IKR-Net achieves state-of-the-art results in blind SISR, especially for noisy images with motion blur.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ITERATIVE KERNEL RECONSTRUCTION FOR DEEP LEARNING-BASED BLIND IMAGE SUPER-RESOLUTION
    Yildirim, Suleyman
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3251 - 3255
  • [2] Deep Learning-Based Blind Image Super-Resolution using Iterative Networks
    Yaar, Asfand
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2021 INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2021,
  • [3] Unfolded Deep Kernel Estimation for Blind Image Super-Resolution
    Zheng, Hongyi
    Yong, Hongwei
    Zhang, Lei
    COMPUTER VISION - ECCV 2022, PT XVIII, 2022, 13678 : 502 - 518
  • [4] Deep Image and Kernel Prior Learning for Blind Super-Resolution
    Yamawaki, Kazuhiro
    Han, Xian-Hua
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA IN ASIA, MMASIA 2022, 2022,
  • [5] Blind Super-Resolution With Iterative Kernel Correction
    Gu, Jinjin
    Lu, Hannan
    Zuo, Wangmeng
    Dong, Chao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1604 - 1613
  • [6] Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
    Hu Fen
    Lin Yang
    Hou Mengdi
    Hu Haofeng
    Pan Leiting
    Liu Tiegen
    Xu Jingjun
    ACTA OPTICA SINICA, 2020, 40 (24)
  • [7] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [8] Image super-resolution reconstruction based on deep dictionary learning and A
    Huang, Yi
    Bian, Weixin
    Jie, Biao
    Zhu, Zhiqiang
    Li, Wenhu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2629 - 2641
  • [9] Chip Image Super-Resolution Reconstruction Based on Deep Learning
    Fan M.
    Chi Y.
    Zhang M.
    Li Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 353 - 360
  • [10] Deep Learning based Frameworks for Image Super-Resolution and Noise-Resilient Super-Resolution
    Sharma, Manoj
    Chaudhury, Santanu
    Lall, Brejesh
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 744 - 751