An Overview of Discrete Distributions in Modelling COVID-19 Data Sets

被引:0
|
作者
Almetwally, Ehab M. [1 ,2 ]
Dey, Sanku [3 ]
Nadarajah, Saralees [4 ]
机构
[1] Delta Univ Sci & Technol, Fac Business Adm, Gamasa 11152, Egypt
[2] Sci Assoc Studies & Appl Res SASAR, Al Manzalah, Egypt
[3] St Anthonys Coll, Dept Stat, Shillong, Meghalaya, India
[4] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
COVID-19; hazard rate; discrete distributions; survival discretization; maximum likelihood estimation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The mathematical modeling of the coronavirus disease-19 (COVID-19) pandemic has been attempted by a large number of researchers from the very beginning of cases worldwide. The purpose of this research work is to find and classify the modelling of COVID-19 data by determining the optimal statistical modelling to evaluate the regular count of new COVID-19 fatalities, thus requiring discrete distributions. Some discrete models are checked and reviewed, such as Binomial, Poisson, Hypergeometric, discrete negative binomial, beta-binomial, Skellam, beta negative binomial, Burr, discrete Lindley, discrete alpha power inverse Lomax, discrete generalized exponential, discrete Marshall-Olkin Generalized exponential, discrete Gompertz-G-exponential, discrete Weibull, discrete inverse Weibull, exponentiated discrete Weibull, discrete Rayleigh, and new discrete Lindley. The probability mass function and the hazard rate function are addressed. Discrete models are discussed based on the maximum likelihood estimates for the parameters. A numerical analysis uses the regular count of new casualties in the countries of Angola,Ethiopia, French Guiana, El Salvador, Estonia, and Greece. The empirical findings are interpreted in-depth.
引用
收藏
页码:1403 / 1430
页数:28
相关论文
共 50 条
  • [1] An Overview of Discrete Distributions in Modelling COVID-19 Data Sets
    Almetwally, Ehab M.
    Dey, Sanku
    Nadarajah, Saralees
    SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY, 2022, 85 (2): : 1403 - 1430
  • [2] An Overview of Discrete Distributions in Modelling COVID-19 Data Sets
    Ehab M. Almetwally
    Sanku Dey
    Saralees Nadarajah
    Sankhya A, 2023, 85 : 1403 - 1430
  • [3] Topp-Leone Odd Frechet Generated Family of Distributions with Applications to COVID-19 Data Sets
    Al-Marzouki, Sanaa
    Jamal, Farrukh
    Chesneau, Christophe
    Elgarhy, Mohammed
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2020, 125 (01): : 437 - 458
  • [4] An overview of COVID-19
    Shi, Yu
    Wang, Gang
    Cai, Xiao-peng
    Deng, Jing-wen
    Zheng, Lin
    Zhu, Hai-hong
    Zheng, Min
    Yang, Bo
    Chen, Zhi
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2020, 21 (05): : 343 - 360
  • [5] The new discrete distribution with application to COVID-19 Data
    Almetwally, Ehab M.
    Abdo, Doaa A.
    Hafez, E. H.
    Jawa, Taghreed M.
    Sayed-Ahmed, Neveen
    Almongy, Hisham M.
    RESULTS IN PHYSICS, 2022, 32
  • [6] Modelling COVID-19 transmission: from data to intervention
    Jia, Zhongwei
    Lu, Zuhong
    LANCET INFECTIOUS DISEASES, 2020, 20 (07): : 757 - 758
  • [7] Interpreting, analysing and modelling COVID-19 mortality data
    Sornette, Didier
    Mearns, Euan
    Schatz, Michael
    Wu, Ke
    Darcet, Didier
    NONLINEAR DYNAMICS, 2020, 101 (03) : 1751 - 1776
  • [8] Interpreting, analysing and modelling COVID-19 mortality data
    Didier Sornette
    Euan Mearns
    Michael Schatz
    Ke Wu
    Didier Darcet
    Nonlinear Dynamics, 2020, 101 : 1751 - 1776
  • [9] Modelling COVID-19
    Andrews C.
    Engineering and Technology, 2020, 15 (04): : 37 - 39
  • [10] Modelling COVID-19
    Vespignani, Alessandro
    Tian, Huaiyu
    Dye, Christopher
    Lloyd-Smith, James O.
    Eggo, Rosalind M.
    Shrestha, Munik
    Scarpino, Samuel, V
    Gutierrez, Bernardo
    Kraemer, Moritz U. G.
    Wu, Joseph
    Leung, Kathy
    Leung, Gabriel M.
    NATURE REVIEWS PHYSICS, 2020, 2 (06) : 279 - 281