Data-Driven Approach to Coarse-Graining Simple Liquids in Confinement

被引:0
|
作者
Nadkarni, Ishan [1 ]
Wu, Haiyi [2 ]
Aluru, Narayana R. [1 ,2 ]
机构
[1] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS; INVERSE PROBLEM; MODELS; SIMULATIONS; POTENTIALS; PAIR; TEMPERATURE; MESOSCALE; NETWORKS; FLUIDS;
D O I
10.1021/acs.jctc.3c00633
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a data-driven framework for identifying coarse-grained (CG) Lennard-Jones (LJ) potential parameters in confined systems for simple liquids. Our approach involves the use of a Deep Neural Network (DNN) that is trained to approximate the solution of the Inverse Liquid State (ILST) problem for confined systems. The DNN model inherently incorporates essential physical characteristics specific to confined fluids, enabling an accurate prediction of inhomogeneity effects. By utilizing transfer learning, we predict single-site LJ potentials of simple multiatomic liquids confined in a slit-like channel, which effectively replicate both the fluid structure and molecular force of the target All-Atom (AA) system when the electrostatic interactions are not dominant. In addition, we showcase the synergy between the data-driven approach and the well-known Bottom-Up coarse-graining method utilizing Relative-Entropy (RE) Minimization. Through the sequential utilization of these two methods, the robustness of the iterative RE method is significantly augmented, leading to a remarkable enhancement in convergence.
引用
收藏
页码:7358 / 7370
页数:13
相关论文
共 50 条
  • [1] Data-driven dynamical coarse-graining for condensed matter systems
    del Razo, Mauricio J.
    Crommelin, Daan
    Bolhuis, Peter G.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (02):
  • [2] Article A data-driven optimization method for coarse-graining gene regulatory networks
    Caranica, Cristian
    Lu, Mingyang
    ISCIENCE, 2023, 26 (02)
  • [3] Multiscale coarse-graining of ionic liquids
    Wang, YT
    Izvekov, S
    Yan, TY
    Voth, GA
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (08): : 3564 - 3575
  • [4] A coarse-graining approach to model molecular liquids for mesoscale problems
    Zerze, Hasan
    Gupta, Ayush
    Baksi, Atanu
    Chakraborty, Dipayan
    Vekilov, Peter G.
    Rimer, Jeffrey D.
    Zerze, Gul H.
    AICHE JOURNAL, 2025, 71 (03)
  • [5] Coarse-Graining Approach to Atomistic SpinDynamics
    Nystrand, T.
    Venemalm, J.
    Werpers, J.
    Eriksson, O.
    Chico, J.
    Bergman, A.
    ULTRAFAST MAGNETISM I, 2015, 159 : 162 - 165
  • [6] COARSE-GRAINING APPROACH TO QUANTUM COSMOLOGY
    CALZETTA, E
    CASTAGNINO, M
    SCOCCIMARRO, R
    PHYSICAL REVIEW D, 1992, 45 (08): : 2806 - 2813
  • [7] Relative entropy approach to coarse-graining
    Shell, M. Scott
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [8] Data-driven coarse graining of large biomolecular structures
    Chen, Yi-Ling
    Habeck, Michael
    PLOS ONE, 2017, 12 (08):
  • [9] Coarse-graining of molecular liquids with integral equation theory
    Guenza, Marina
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [10] Theoretical coarse-graining approach to bridge length scales in diblock copolymer liquids
    Sambriski, E. J.
    Guenza, M. G.
    PHYSICAL REVIEW E, 2007, 76 (05):