Investigation of Low and High-Speed Fluid Dynamics Problems Using Physics-Informed Neural Network

被引:2
|
作者
Joshi, Anubhav [1 ]
Papados, Alexandros [2 ]
Kumar, Rakesh [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Aerosp Engn, Kanpur, India
[2] Univ Maryland, Appl Math & Stat & Sci Computat, College Pk, MD USA
关键词
Physics-informed neural network; Navier-Stokes equations; compressible Euler equation; Sod shock-tube; weighted physics-informed neural network; domain extension; SIMULATIONS;
D O I
10.1080/10618562.2023.2285330
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, we have employed physics-informed neural networks (PINNs) to solve a few fluid dynamics problems at low and high speeds, with a focus on the latter. For high-speed fluid dynamics problems, we deal with the 1D compressible Euler equation, which is used to solve shock-tube problem, viz., Sod shock-tube, with weighted physics-informed neural networks (W-PINNs). This paper also demonstrates how domain extension (W-PINNs-DE) can improve the accuracy of the W-PINNs method. For high-speed flows, dispersion and dissipation errors are present near discontinuities. The W-PINNs-DE method is shown to mitigate this effect and is proven to have advantage over other approximations. Finally, we have solved the same high-speed problem with low-fidelity solution data to generate high-fidelity solutions. We have demonstrated that we can obtain accurate solutions using low-fidelity data in a few seconds of inference time. We have used relative L2 error for validation with exact or high-fidelity solutions.
引用
收藏
页码:149 / 166
页数:18
相关论文
共 50 条
  • [1] Physics-informed neural networks for high-speed flows
    Mao, Zhiping
    Jagtap, Ameya D.
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 360
  • [2] Segmentation of high-speed flow fields using physics-informed clustering
    Ullman, Michael
    Barwey, Shivam
    Lee, Gyu Sub
    Raman, Venkat
    APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE, 2023, 15
  • [3] PHYSICS-INFORMED NEURAL NETWORK WITH NUMERICAL DIFFERENTIATION FOR MODELLING COMPLEX FLUID DYNAMIC PROBLEMS
    Ha, Dao My
    Pao-Hsiung, Chiu
    Cheng, Wong Jian
    Chun, Ooi Chin
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 7, 2022,
  • [4] Physics-Informed Neural Networks for Inverse Problems in Structural Dynamics
    Teloli, Rafael de O.
    Bigot, Mael
    Coelho, Lucas
    Ramasso, Emmanuel
    Tittarelli, Roberta
    Le Moal, Patrice
    Ouisse, Morvan
    NONDESTRUCTIVE CHARACTERIZATION AND MONITORING OF ADVANCED MATERIALS, AEROSPACE, CIVIL INFRASTRUCTURE, AND TRANSPORTATION XVIII, 2024, 12950
  • [5] Physics-Informed Neural Network for Nonlinear Dynamics in Fiber Optics
    Jiang, Xiaotian
    Wang, Danshi
    Fan, Qirui
    Zhang, Min
    Lu, Chao
    Lau, Alan Pak Tao
    LASER & PHOTONICS REVIEWS, 2022, 16 (09)
  • [6] Neuromorphic, physics-informed spiking neural network for molecular dynamics
    Pham, Vuong Van
    Muther, Temoor
    Kalantari Dahaghi, Amirmasoud
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [7] Investigation on aortic hemodynamics based on physics-informed neural network
    Du, Meiyuan
    Zhang, Chi
    Xie, Sheng
    Pu, Fan
    Zhang, Da
    Li, Deyu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11545 - 11567
  • [8] Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains
    Bublik, Ondrej
    Heidler, Vaclav
    Pecka, Ales
    Vimmr, Jan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2023, 37 (01) : 67 - 81
  • [9] CDAnet: A Physics-Informed Deep Neural Network for Downscaling Fluid Flows
    Hammoud, Mohamad Abed El Rahman
    Titi, Edriss S.
    Hoteit, Ibrahim
    Knio, Omar
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (12)
  • [10] A Physics-Informed Neural Network for the Prediction of Unmanned Surface Vehicle Dynamics
    Xu, Peng-Fei
    Han, Chen-Bo
    Cheng, Hong-Xia
    Cheng, Chen
    Ge, Tong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (02)