Uniformly strong consistency and the rates of asymptotic normality for the edge frequency polygons

被引:0
|
作者
Xi, Mengmei [1 ]
Wang, Chunhua [2 ]
Wang, Xuejun [1 ]
机构
[1] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
[2] Anhui Univ Chinese Med, Sch Informat Engn, Hefei, Peoples R China
关键词
Berry-Esseen bounds; uniformly strong consistency; density function; edge frequency polygon estimator; BOUNDS;
D O I
10.1080/02331888.2023.2268314
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we primarily focus on the edge frequency polygon estimator of $ f(x) $ f(x), which represents the probability density function of a sequence of phi-mixing random variables $ \{X_i, i\geq 1\} $ {Xi,i >= 1}. We establish the uniformly strong consistency and the convergence rate of asymptotic normality for the edge frequency polygon estimator under suitable conditions. Notably, the convergence rate achieves $ O(n<^>{-1/6}) $ O(n-1/6), which is more precise compared to the corresponding rate mentioned in the existing literature. Additionally, we present simulation studies to validate the theoretical results.
引用
收藏
页码:1444 / 1468
页数:25
相关论文
共 50 条