From sparse SLAM to dense mapping for UAV autonomous navigation

被引:2
|
作者
Habib, Yassine [1 ,2 ]
Papadakis, Panagiotis [2 ]
Fagette, Antoine [3 ]
Le Barz, Cedric [1 ]
Goncalves, Tiago [1 ]
Buche, Cedric [4 ]
机构
[1] Thales, ThereSIS Lab, Palaiseau, France
[2] IMT Atlantique, Lab STICC, UMR 6285, Team RAMBO, Brest, France
[3] Thales, Thales Res & Technol, Montreal, PQ, Canada
[4] ENIB, IRL CNRS CROSSING, Adelaide, Australia
来源
GEOSPATIAL INFORMATICS XIII | 2023年 / 12525卷
关键词
D O I
10.1117/12.2663706
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous or semi-autonomous navigation of UAVs is of great interest in the Defense and Security domains, as it significantly improves their efficiency and responsiveness during operations. The perception of the environment and in particular the dense and metric 3D mapping in real time is a priority for navigation and obstacle avoidance. We therefore present our strategy to jointly estimate a dense 3D map by combining a sparse map estimated by a state-of-the-art Simultaneous Localization and Mapping (SLAM) system and a dense depth map predicted by a monocular self-supervised method. Then, a lightweight and volumetric multi-view fusion solution is used to build and update a voxel map.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multilayer Mapping Kit for Autonomous UAV Navigation
    Chen, Shengyang
    Chen, Han
    Chang, Ching-Wei
    Wen, Chih-Yung
    IEEE ACCESS, 2021, 9 (09): : 31493 - 31503
  • [2] ON THE MAPPING PROBLEM IN SLAM APPROACHES FOR AUTONOMOUS ROBOT NAVIGATION
    Raju, Vomsheendhur
    Selekwa, Majura F.
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 7B, 2021,
  • [3] The collaborative mapping and navigation based on visual SLAM in UAV platform
    Wang C.
    Luo B.
    Li C.
    Wang W.
    Yin L.
    Zhao Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2020, 49 (06): : 767 - 776
  • [4] A Hybrid Sparse-Dense Monocular SLAM System for Autonomous Driving
    Gallagher, Louis
    Kumar, Varun Ravi
    Yogamani, Senthil
    McDonald, John B.
    10TH EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR 2021), 2021,
  • [5] Building Maps for Autonomous Navigation Using Sparse Visual SLAM Features
    Ling, Yonggen
    Shen, Shaojie
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1374 - 1381
  • [6] Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target Detection
    Guerra, Anna
    Guidi, Francesco
    Dardari, Davide
    Djuric, Petar M.
    2020 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM (PLANS), 2020, : 1004 - 1013
  • [7] Dense mapping from an accurate tracking SLAM
    Huang, Weijie
    Zhang, Guoshan
    Han, Xiaowei
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (06) : 1565 - 1574
  • [8] Dense Mapping From an Accurate Tracking SLAM
    Weijie Huang
    Guoshan Zhang
    Xiaowei Han
    IEEE/CAA Journal of Automatica Sinica, 2020, 7 (06) : 1565 - 1574
  • [9] Visual Inertial Navigation for a Small UAV Using Sparse and Dense Optical Flow
    Fanin, Fausto
    Hong, Ju-Hyeon
    2019 INTERNATIONAL WORKSHOP ON RESEARCH, EDUCATION AND DEVELOPMENT OF UNMANNED AERIAL SYSTEMS (RED UAS 2019), 2019, : 206 - 212
  • [10] Deep-Reinforcement-Learning-Based Autonomous UAV Navigation With Sparse Rewards
    Wang, Chao
    Wang, Jian
    Wang, Jingjing
    Zhang, Xudong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (07): : 6180 - 6190