Considering weights in real social networks: A review

被引:8
|
作者
Bellingeri, M. [1 ,2 ]
Bevacqua, D. [3 ]
Sartori, F. [4 ,5 ]
Turchetto, M. [1 ,2 ]
Scotognella, F. [6 ,7 ]
Alfieri, R. [1 ,2 ]
Nguyen, N. K. K. [8 ]
Le, T. T. [9 ]
Nguyen, Q. [10 ,11 ]
Cassi, D. [1 ,2 ]
机构
[1] Univ Parma, Dipartimento Sci Matemat Fis & Informat, Parma, Italy
[2] INFN, Grp Collegato Parma, Parma, Italy
[3] French Natl Res Inst Agr Food & Environm INRAE, PSH, UR 1115, Avignon, France
[4] Karlsruhe Inst Technol, Dept Sociol, Karlsruhe, Germany
[5] Max Planck Inst Dynam & Selforg, Gottingen, Germany
[6] Politecn Milan, Dipartimento Fis, Milan, Italy
[7] Ist Italiano Tecnol, Ctr Nano Sci & Technol PoliMi, Milan, Italy
[8] Van Lang Univ, Fac Basic Sci, Ho Chi Minh City, Vietnam
[9] Vietnam Natl Univ, John Neumann Inst, Ho Chi Minh City, Vietnam
[10] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City, Vietnam
[11] Duy Tan Univ, Fac Nat Sci, Da Nang, Vietnam
来源
FRONTIERS IN PHYSICS | 2023年 / 11卷
基金
欧洲研究理事会;
关键词
social networks; weighted networks; weighted network analysis; network science; social physics; COMPLEX NETWORKS; ATTACK STRATEGIES; WEAK TIES; CENTRALITY; STRENGTH; NODE; IDENTIFICATION; COMMUNITIES; ROBUSTNESS; TOLERANCE;
D O I
10.3389/fphy.2023.1152243
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Network science offers powerful tools to model complex social systems. Most social network science research focuses on topological networks by simply considering the binary state of the links, i.e., their presence or absence. Nonetheless, complex social systems present heterogeneity in link interactions (link weight), and accounting for this heterogeneity, it is mandatory to design reliable social network models. Here, we revisit the topic of weighted social networks (WSNs). By summarizing the main notions, findings, and applications in the field of WSNs, we outline how WSN methodology may improve the modeling of several real problems in social sciences. We are convinced that WSNs may furnish ideas and insights to open interesting lines of new research in the social sciences.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Link and Node Removal in Real Social Networks: A Review
    Bellingeri, Michele
    Bevacqua, Daniele
    Scotognella, Francesco
    Alfieri, Roberto
    Nguyen, Quang
    Montepietra, Daniele
    Cassi, Davide
    FRONTIERS IN PHYSICS, 2020, 8
  • [2] The geometric nature of weights in real complex networks
    Allard, Antoine
    Serrano, M. Angeles
    Garcia-Perez, Guillermo
    Boguna, Marian
    NATURE COMMUNICATIONS, 2017, 8
  • [3] The geometric nature of weights in real complex networks
    Antoine Allard
    M. Ángeles Serrano
    Guillermo García-Pérez
    Marián Boguñá
    Nature Communications, 8
  • [4] A review on neural networks with random weights
    Cao, Weipeng
    Wang, Xizhao
    Ming, Zhong
    Gao, Jinzhu
    NEUROCOMPUTING, 2018, 275 : 278 - 287
  • [5] Differential Privacy for Edge Weights in Social Networks
    Li, Xiaoye
    Yang, Jing
    Sun, Zhenlong
    Zhang, Jianpei
    SECURITY AND COMMUNICATION NETWORKS, 2017, : 1 - 10
  • [6] Modification of Social Dominance in Social Networks by Selective Adjustment of Interpersonal Weights
    Ye, Mengbin
    Liu, Ji
    Anderson, Brian D. O.
    Yu, Changbin
    Basar, Tamer
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [7] Community Detection in Social Networks Considering Social Behaviors
    Wang, Yingkui
    Jin, Di
    He, Dongxiao
    Musial, Katarzyna
    Dang, Jianwu
    IEEE ACCESS, 2022, 10 : 109969 - 109982
  • [8] User Real-Time Influence Ranking Algorithm of Social Networks Considering Interactivity and Topicality
    Li, Zhaohui
    Piao, Wenjia
    Sun, Zhengyi
    Wang, Lin
    Wang, Xiaoqian
    Li, Wenli
    ENTROPY, 2023, 25 (06)
  • [9] Evolution of real valued weights for RBF-DDA networks
    Paetz, Juergen
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 2907 - 2913
  • [10] Opinion Dynamics Considering Social Comparison in Online Social Networks
    Liu, Mengmeng
    Rong, Lili
    KNOWLEDGE AND SYSTEMS SCIENCES, KSS 2019, 2019, 1103 : 149 - 159