Hydrodynamic collapse of the Leidenfrost vapor layer

被引:1
|
作者
Harvey, Dana [1 ,2 ]
Burton, Justin C. [1 ]
机构
[1] Emory Univ, Dept Phys, Atlanta, GA 30033 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
HEAT-TRANSFER; FILM; TEMPERATURE; WATER; CONTACT; SPHERES; SALT;
D O I
10.1103/PhysRevFluids.8.094003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
During the Leidenfrost effect, a stable vapor film separates a hot solid from an evaporating liquid. Eventually, after formation and upon cooling, the vapor layer cannot be sustained and undergoes a violent collapse evidenced by explosive boiling. Computationally, modeling this instability involves an interplay between hydrodynamics, thermodynamics, rapid evaporation, and length scales from mu m to cm. Selective assumptions, made to reduce computational costs, have limited most previous studies to steady-state investigations. Here, we combine two-phase laminar flow, heat transfer, and evaporation in a finite-element simulation to examine the failure of Leidenfrost vapor layers upon cooling. During periods of quiescence, the geometry of the vapor layer agrees well with steady-state lubrication theory. In the simulations, we report the local temperature of the solid at failure, T-, which provides a lower bound for recent experimental work using the same geometric and material conditions. Surprisingly, we find that inertial forces, which are typically ignored in theoretical treatments of the vapor layer, are responsible for initiating the instability leading to failure.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Dynamics of the vapor layer below a Leidenfrost drop
    Caswell, Thomas A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [2] Geometry of the Vapor Layer Under a Leidenfrost Drop
    Burton, J. C.
    Sharpe, A. L.
    van der Veen, R. C. A.
    Franco, A.
    Nagel, S. R.
    PHYSICAL REVIEW LETTERS, 2012, 109 (07)
  • [3] Measurement of the vapor layer under a dynamic Leidenfrost drop
    Lee, Gi Cheol
    Noh, Hyunwoo
    Kwak, Ho Jae
    Kim, Tong Kyun
    Park, Hyun Sun
    Fezzaa, Kamel
    Kim, Moo Hwan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 124 : 1163 - 1171
  • [4] Fast spreading of liquid on Leidenfrost vapor layer surface
    Tsai, Hsiang Yu
    Lin, Yu Zhu
    Shieh, Jiann
    Hsu, Chin Chi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 677
  • [5] Equivalent capacitive thickness of the vapor layer below Leidenfrost drops
    Roques-Carmes, Thibault
    Domps, Andre
    Marchal, Philippe
    Marchal-Heussler, Laurent
    EXPERIMENTS IN FLUIDS, 2018, 59 (07)
  • [6] Equivalent capacitive thickness of the vapor layer below Leidenfrost drops
    Thibault Roques-Carmes
    André Domps
    Philippe Marchal
    Laurent Marchal-Heussler
    Experiments in Fluids, 2018, 59
  • [7] Hydrodynamic sound generated by collapse of vapor bubbles in subcooled liquid flow
    Hayashi K.
    Hosokawa S.
    Tomiyama A.
    Multiphase Science and Technology, 2019, 31 (01) : 61 - 71
  • [8] Drag Reduction by Leidenfrost Vapor Layers
    Vakarelski, Ivan U.
    Marston, Jeremy O.
    Chan, Derek Y. C.
    Thoroddsen, Sigurdur T.
    PHYSICAL REVIEW LETTERS, 2011, 106 (21)
  • [9] Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer
    Jerng, Dong Wook
    Kim, Dong Eok
    APPLIED PHYSICS LETTERS, 2018, 112 (05)
  • [10] Tailoring vapor film beneath a Leidenfrost drop
    Li, An
    Li, Huizeng
    Lyu, Sijia
    Zhao, Zhipeng
    Xue, Luanluan
    Li, Zheng
    Li, Kaixuan
    Li, Mingzhu
    Sun, Chao
    Song, Yanlin
    NATURE COMMUNICATIONS, 2023, 14 (01)