Scalar Curvatures of Invariant Almost Hermitian Structures on Flag Manifolds with Two and Three Isotropy Summands

被引:0
|
作者
Grama, Lino [1 ]
Oliveira, Ailton R. [2 ]
机构
[1] Imecc Unicamp, Dept Matemat, Rua Sergio Buarque Holanda,651,Cidade Univ Zeferin, BR-13083859 Campinas, SP, Brazil
[2] UEMS Univ Estadual Mato Grosso Sul MS, Cidade UniversitAria Dourados,Rodovia Itahum, Km 1, Dourados, MS, Brazil
基金
巴西圣保罗研究基金会;
关键词
Almost Hermitian geometry; Chern curvature; Flag manifolds; EINSTEIN-METRICS;
D O I
10.1007/s12220-023-01377-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study invariant almost Hermitian geometry on generalized flag manifolds which the isotropy representation decompose into two or three irreducible components. We will provide a classification of such flag manifolds admitting Kahler like scalar curvature metric, that is, almost Hermitian structures (g, J) satisfying s = 2s(C) where s is Riemannian scalar curvature and s(C) is the Chern scalar curvature.
引用
收藏
页数:35
相关论文
共 50 条