共 50 条
Metal artifacts and artifact reduction of neurovascular coils in photon-counting detector CT versus energy-integrating detector CT - in vitro comparison of a standard brain imaging protocol
被引:13
|作者:
Schmitt, Niclas
[1
]
Wucherpfennig, Lena
[2
]
Rotkopf, Lukas T.
[3
]
Sawall, Stefan
[4
]
Kauczor, Hans-Ulrich
[2
]
Bendszus, Martin
[1
]
Moehlenbruch, Markus A.
[1
]
Schlemmer, Heinz-Peter
[3
]
Vollherbst, Dominik F.
[1
]
机构:
[1] Heidelberg Univ Hosp, Dept Neuroradiol, Neuenheimer Feld 400, D-69120 Heidelberg, Germany
[2] Heidelberg Univ Hosp, Dept Diagnost & Intervent Radiol, Neuenheimer Feld 420, D-69120 Heidelberg, Germany
[3] German Canc Res Ctr, Div Radiol, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
[4] German Canc Res Ctr, Div Xray Imaging & Computed Tomog, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
关键词:
Metal artifact reduction;
Coils;
Photon-counting CT;
Aneurysm;
Brain imaging;
COMPUTED-TOMOGRAPHY;
D O I:
10.1007/s00330-022-09073-y
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Objectives Photon-counting detector computed tomography (PCD-CT) is a promising new technique for CT imaging. The aim of the present study was the in vitro comparison of coil-related artifacts in PCD-CT and conventional energy-integrating detector CT (EID-CT) using a comparable standard brain imaging protocol before and after metal artifact reduction (MAR). Methods A nidus-shaped rubber latex, resembling an aneurysm of the cerebral arteries, was filled with neurovascular platinum coils and inserted into a brain imaging phantom. Image acquisition and reconstruction were repeatedly performed for PCD-CT and EID-CT (n = 10, respectively) using a standard brain imaging protocol. Moreover, linear interpolation MAR was performed for PCD-CT and EID-CT images. The degree of artifacts was analyzed quantitatively (standard deviation in a donut-shaped region of interest) and qualitatively (5-point scale analysis). Results Quantitative and qualitative analysis demonstrated a lower degree of metal artifacts in the EID-CT images compared to the total-energy PCD-CT images (e.g., 82.99 +/- 7.89 Hounsfield units (HU) versus 90.35 +/- 6.28 HU; p < 0.001) with no qualitative difference between the high-energy bin PCD-CT images and the EID-CT images (4.18 +/- 0.37 and 3.70 +/- 0.64; p = 0.575). After MAR, artifacts were more profoundly reduced in the PCD-CT images compared to the EID-CT images in both analyses (e.g., 2.35 +/- 0.43 and 3.18 +/- 0.34; p < 0.001). Conclusion PCD-CT in combination with MAR have the potential to provide an improved option for reduction of coil-related artifacts in cerebral imaging in this in vitro study.
引用
收藏
页码:803 / 811
页数:9
相关论文