Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity

被引:13
|
作者
Bian, Xiaojie [1 ,2 ]
Wang, Wenfeng [2 ]
Abudurexiti, Mierxiati [2 ,3 ]
Zhang, Xingming [2 ]
Ma, Weiwei [1 ,2 ]
Shi, Guohai [1 ]
Du, Leilei [2 ]
Xu, Midie [4 ]
Wang, Xin [4 ]
Tan, Cong [4 ]
Sun, Hui [4 ]
He, Xiadi [5 ,6 ]
Zhang, Chenyue [7 ]
Zhu, Yao [1 ,2 ]
Zhang, Min [8 ,9 ]
Ye, Dingwei [1 ,2 ]
Wang, Jianhua [2 ]
机构
[1] Fudan Univ, Shanghai Med Coll, Dept Oncol, Dept Urol,Shanghai Canc Ctr, Shanghai 200032, Peoples R China
[2] Fudan Univ, Shanghai Canc Ctr, Shanghai Urol Canc Inst, Canc Inst,Dept Oncol,Shanghai Med Coll, Shanghai 200032, Peoples R China
[3] Shanghai Pudong New Area Gongli Hosp, Dept Urol, Shanghai 200135, Peoples R China
[4] Fudan Univ, Shanghai Canc Ctr, Dept Pathol, Shanghai 200032, Peoples R China
[5] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02215 USA
[6] Harvard Med Sch, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[7] Fudan Univ, Shanghai Canc Ctr, Dept Integrated Therapy, Shanghai 200032, Peoples R China
[8] Shanghai Jiao Tong Univ, Sch Med, Pediat Translat Med Inst, Shanghai 200127, Peoples R China
[9] Shanghai Jiao Tong Univ, Sch Med, Shanghai Childrens Med Ctr, Pediat Congenital Heart Dis Inst, Shanghai 200127, Peoples R China
基金
中国国家自然科学基金;
关键词
CD8(+)T cell; heterogeneity; prostate cancer; single-cell RNA sequencing; spatial transcriptomics; the tumor microenvironment; PATHWAY ACTIVATION; LINEAGE PLASTICITY; LUMINAL CELLS; INFERENCE; THERAPY;
D O I
10.1002/advs.202305724
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9(high)AR(low) expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8(+)CXCR6(+ )T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP(+) fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Integration analysis of single-cell multi-omics in the prostate cancer ecosystem
    Bian, Xiaojie
    Wang, Wenfeng
    Abudurexiti, Mierxiati
    Yao, Zhu
    Zhang, Min
    Ye, Ding-Wei
    Wang, Jianhua
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [2] Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
    Liu, Longqi
    Liu, Chuanyu
    Quintero, Andres
    Wu, Liang
    Yuan, Yue
    Wang, Mingyue
    Cheng, Mengnan
    Leng, Lizhi
    Xu, Liqin
    Dong, Guoyi
    Li, Rui
    Liu, Yang
    Wei, Xiaoyu
    Xu, Jiangshan
    Chen, Xiaowei
    Lu, Haorong
    Chen, Dongsheng
    Wang, Quanlei
    Zhou, Qing
    Lin, Xinxin
    Li, Guibo
    Liu, Shiping
    Wang, Qi
    Wang, Hongru
    Fink, J. Lynn
    Gao, Zhengliang
    Liu, Xin
    Hou, Yong
    Zhu, Shida
    Yang, Huanming
    Ye, Yunming
    Lin, Ge
    Chen, Fang
    Herrmann, Carl
    Eils, Roland
    Shang, Zhouchun
    Xu, Xun
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [3] Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity
    Longqi Liu
    Chuanyu Liu
    Andrés Quintero
    Liang Wu
    Yue Yuan
    Mingyue Wang
    Mengnan Cheng
    Lizhi Leng
    Liqin Xu
    Guoyi Dong
    Rui Li
    Yang Liu
    Xiaoyu Wei
    Jiangshan Xu
    Xiaowei Chen
    Haorong Lu
    Dongsheng Chen
    Quanlei Wang
    Qing Zhou
    Xinxin Lin
    Guibo Li
    Shiping Liu
    Qi Wang
    Hongru Wang
    J. Lynn Fink
    Zhengliang Gao
    Xin Liu
    Yong Hou
    Shida Zhu
    Huanming Yang
    Yunming Ye
    Ge Lin
    Fang Chen
    Carl Herrmann
    Roland Eils
    Zhouchun Shang
    Xun Xu
    Nature Communications, 10
  • [4] Comprehensive multi-omics single-cell data integration reveals greater heterogeneity in the human immune system
    Xu, Congmin
    Yang, Junkai
    Kosters, Astrid
    Babcock, Benjamin R.
    Qiu, Peng
    Ghosn, Eliver E. B.
    ISCIENCE, 2022, 25 (10)
  • [5] Multi-omics single-cell analysis
    Nicole Rusk
    Nature Methods, 2019, 16 : 679 - 679
  • [6] Multi-omics single-cell analysis
    Rusk, Nicole
    NATURE METHODS, 2019, 16 (08) : 679 - 679
  • [7] Computational strategies for single-cell multi-omics integration
    Adossa, Nigatu
    Khan, Sofia
    Rytkonen, Kalle T.
    Elo, Laura L.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2588 - 2596
  • [8] Intricacies of single-cell multi-omics data integration
    Rautenstrauch, Pia
    Vlot, Anna Hendrika Cornelia
    Saran, Sepideh
    Ohler, Uwe
    TRENDS IN GENETICS, 2022, 38 (02) : 128 - 139
  • [9] Single-Cell Multi-Omics Analysis Reveals Heterogeneity of Malignant Plasma Cell during Progression of Multiple Myeloma
    Feng, Fangshuo
    Sun, Hao
    Zhang, Xiaoyu
    Sun, Xiyue
    Yu, Tengteng
    Xiong, Haiqing
    An, Gang
    Qiu, Lu-Gui
    Hao, Mu
    BLOOD, 2024, 144 : 6845 - 6846
  • [10] Application of Single-Cell Multi-Omics in Dissecting Cancer Cell Plasticity and Tumor Heterogeneity
    Pan, Deshen
    Jia, Deshui
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8