Mask information-based gamma correction in fringe projection profilometry

被引:9
|
作者
Song, Huixin [1 ]
Kong, Lingbao [1 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Shanghai Engn Res Ctr Ultraprecis Opt Mfg, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
PHASE; ALGORITHMS; COMPENSATION; NONLINEARITY; SURFACES;
D O I
10.1364/OE.492176
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For fringe projection profilometry (FPP), the gamma effect of the camera and projector will cause non-sinusoidal distortion of the fringe patterns, leading to periodic phase errors and ultimately affecting the reconstruction accuracy. This paper presents a gamma correction method based on mask information. Since the gamma effect will introduce higher-order harmonics into the fringe patterns, on top of projecting two sequences of phase-shifting fringe patterns having different frequencies, a mask image is projected to provide enough information to determine the coefficients of higher-order fringe harmonics using the least-squares method. The true phase is then calculated using Gaussian Newton iteration to compensate for the phase error due to the gamma effect. It does not require projecting a large number of images, and only 2 x 3 phase shift patterns and 1 mask pattern minimum are required. Simulation and experimental results demonstrate that the method can effectively correct the errors caused by the gamma effect. & COPY; 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:19478 / 19490
页数:13
相关论文
共 50 条
  • [1] Gamma correction for digital fringe projection profilometry
    Guo, HW
    He, HT
    Chen, M
    APPLIED OPTICS, 2004, 43 (14) : 2906 - 2914
  • [2] Probability-distribution-based Gamma correction method in fringe projection profilometry
    Ma, Long
    Tang, Lingxuan
    Pei, Xin
    Sun, Benyuan
    Qian, Ruijie
    Zhao, Yuan
    OPTICAL METROLOGY AND INSPECTION FOR INDUSTRIAL APPLICATIONS IX, 2022, 12319
  • [3] Gamma correction in simultaneously dual fringe projection moire profilometry
    Ordones, Sotero
    Su, Rong
    OPTICS AND PHOTONICS FOR ADVANCED DIMENSIONAL METROLOGY III, 2024, 12997
  • [4] Gamma correction for two step phase shifting fringe projection profilometry
    Zheng, Dongliang
    Da, Feipeng
    OPTIK, 2013, 124 (13): : 1392 - 1397
  • [5] Multi-Color Channel Gamma Correction in Fringe Projection Profilometry
    Sun, Xiang
    Zhang, Yunpeng
    Kong, Lingbao
    Peng, Xing
    Luo, Zhenjun
    Shi, Jie
    Tian, Liping
    PHOTONICS, 2025, 12 (01)
  • [6] Generic gamma correction for accuracy enhancement in fringe-projection profilometry
    Hoang, Thang
    Pan, Bing
    Nguyen, Dung
    Wang, Zhaoyang
    OPTICS LETTERS, 2010, 35 (12) : 1992 - 1994
  • [7] A fast and accurate gamma correction based on Fourier spectrum analysis for digital fringe projection profilometry
    Ma, S.
    Quan, C.
    Zhu, R.
    Chen, L.
    Li, B.
    Tay, C. J.
    OPTICS COMMUNICATIONS, 2012, 285 (05) : 533 - 538
  • [8] Fringe Order Correction for Fringe Projection Profilometry Based on Robust Principal Component Analysis
    Zhang, Yiwei
    Tong, Jun
    Lu, Lei
    Xi, Jiangtao
    Yu, Yanguang
    Guo, Qinghua
    IEEE ACCESS, 2021, 9 : 23110 - 23119
  • [9] Active projection nonlinear ? correction method for fringe projection profilometry
    Wang, L. I. N.
    Zhang, Y. U. E. T. O. N. G.
    Yi, L. I. N. A.
    Hao, X. I. N.
    Wang, M. E. I. Y. I.
    Wang, X. I. A. N. G. J. U. N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (11) : 1983 - 1991
  • [10] Fringe Order Correction for Fringe Projection Profilometry Based on Robust Principal Component Analysis
    Zhang, Yiwei
    Tong, Jun
    Lu, Lei
    Xi, Jiangtao
    Yu, Yanguang
    Guo, Qinghua
    IEEE Access, 2021, 9 : 23110 - 23119