Low-Illumination Image Enhancement Based on Deep Learning Techniques: A Brief Review

被引:17
|
作者
Tang, Hao [1 ]
Zhu, Hongyu [1 ]
Fei, Linfeng [1 ]
Wang, Tingwei [1 ]
Cao, Yichao [2 ]
Xie, Chao [1 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Peoples R China
[2] Southeast Univ, Sch Automation, Nanjing 210096, Peoples R China
[3] Nanjing Forestry Univ, Coll Landscape Architecture, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; low-illumination image enhancement; Retinex theory; quality evaluation index; image dataset; LOW-LIGHT IMAGE; NETWORK; ALGORITHM;
D O I
10.3390/photonics10020198
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As a critical preprocessing technique, low-illumination image enhancement has a wide range of practical applications. It aims to improve the visual perception of a given image captured without sufficient illumination. Conventional low-illumination image enhancement methods are typically implemented by improving image brightness, enhancing image contrast, and suppressing image noise simultaneously. Nevertheless, recent advances in this area are dominated by deep-learning-based solutions, and consequently, various deep neural networks have been proposed and applied to this field. Therefore, this paper briefly reviews the latest low-illumination image enhancement, ranging from its related algorithms to its unsolved open issues. Specifically, current low-illumination image enhancement methods based on deep learning are first sorted out and divided into four categories: supervised learning methods, unsupervised learning methods, semi-supervised learning methods, and zero-shot learning methods. Then, existing low-light image datasets are summarized and analyzed. In addition, various quality assessment indices for low-light image enhancement are introduced in detail. We also compare 14 representative algorithms in terms of both objective evaluation and subjective evaluation. Finally, the future development trend of low-illumination image enhancement and its open issues are summarized and prospected.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Event-Based Low-Illumination Image Enhancement
    Jiang, Yu
    Wang, Yuehang
    Li, Siqi
    Zhang, Yongji
    Zhao, Minghao
    Gao, Yue
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1920 - 1931
  • [2] Low-Illumination Image Enhancement Based on MR-VAE
    Jiang Z.-T.
    Wu X.
    Zhang S.-Q.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (07): : 1328 - 1339
  • [3] Linear Contrast Enhancement Network for Low-Illumination Image Enhancement
    Zhou, Zhaorun
    Shi, Zhenghao
    Ren, Wenqi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [4] Low-illumination Image Enhancement Method Based on Retinex and Gamma Transformation
    Wang, Wenyun
    Shu, Chenyang
    Zhu, Longtao
    Hang, Jinglong
    Yang, Jingyun
    Li, Shouke
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (10): : 136 - 144
  • [5] Linear Contrast Enhancement Network for Low-Illumination Image Enhancement
    Zhou, Zhaorun
    Shi, Zhenghao
    Ren, Wenqi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Linear Contrast Enhancement Network for Low-Illumination Image Enhancement
    Zhou, Zhaorun
    Shi, Zhenghao
    Ren, Wenqi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] An Improved Retinex low-illumination image enhancement algorithm
    Wang, ShaoQuan
    Gao, DeYong
    Wang, YangPing
    Wang, Song
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1134 - 1139
  • [8] Low-Illumination Image Enhancement Algorithm Based on a Physical Lighting Model
    Yu, Shun-Yuan
    Zhu, Hong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (01) : 28 - 37
  • [9] Low-Illumination Image Enhancement Method Based on Attention Mechanism and Retinex
    Huang Huixian
    Chen Fanhao
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (20)
  • [10] Low-Illumination Color Image Enhancement System Based on Single Sensor
    Jin Shikai
    Xu Jiangtao
    Nie Kaiming
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (14)